How to use the mxnet.symbol.Variable function in mxnet

To help you get started, we’ve selected a few mxnet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github hpi-xnor / BMXNet-v2 / tests / python / mkl / test_subgraph.py View on Github external
def head_symbol(data_shape):
  data = mx.symbol.Variable('data', shape=data_shape, dtype='float32')
  weight = mx.symbol.Variable('weight', dtype='float32')
  bn = mx.sym.BatchNorm(data=data, fix_gamma=True, eps=2e-5, momentum=0.9, name='bn')
  return bn, weight
github hpi-xnor / BMXNet-v2 / tests / python / unittest / test_module.py View on Github external
def sym_gen(seq_len):
        with mx.AttrScope(ctx_group='dev1'):
            data = mx.symbol.Variable('data')
            weight = mx.symbol.Variable('dev1_weight')
            bias = mx.symbol.Variable('dev1_bias')
            fc = data
            for i in range(seq_len):
                fc  = mx.symbol.FullyConnected(data=fc, weight=weight, bias=bias,
                                               name='dev1_fc_%d' % i, num_hidden=num_hidden)
        with mx.AttrScope(ctx_group='dev2'):
            label = mx.symbol.Variable('label')
            weight = mx.symbol.Variable('dev2_weight')
            bias = mx.symbol.Variable('dev2_bias')
            for i in range(seq_len):
                fc  = mx.symbol.FullyConnected(data=fc, weight=weight, bias=bias,
                                               name='dev2_fc_%d' % i, num_hidden=num_hidden)
            sym = mx.symbol.SoftmaxOutput(fc, label, name='softmax')

        return sym, ('data',), ('label',)
github hpi-xnor / BMXNet-v2 / tests / python / unittest / test_attr.py View on Github external
def test_operator():
    data = mx.symbol.Variable('data')
    with mx.AttrScope(__group__='4', __data__='great'):
        fc1 = mx.symbol.Activation(data, act_type='relu')
        with mx.AttrScope(__init_bias__='0.0'):
            fc2 = mx.symbol.FullyConnected(fc1, num_hidden=10, name='fc2')
    assert fc1.attr('__data__') == 'great'
    assert fc2.attr('__data__') == 'great'
    assert fc2.attr('__init_bias__') == '0.0'
    fc2copy = pkl.loads(pkl.dumps(fc2))
    assert fc2copy.tojson() == fc2.tojson()
    fc2weight = fc2.get_internals()['fc2_weight']
github eldercrow / additions_mxnet / image-classification / symbols / mobilenetv8.py View on Github external
def get_symbol(num_classes=1000, **kwargs):
    '''
    '''
    use_global_stats = kwargs['use_global_stats']

    data = mx.symbol.Variable(name="data")
    label = mx.symbol.Variable(name="label")

    conv0 = mx.sym.Convolution(data, name='0/conv',
            num_filter=3, kernel=(3, 3), pad=(1, 1), num_group=3, no_bias=True)
    conv1 = bn_conv(conv0, '1/',
            num_filter=24, kernel=(3, 3), pad=(1, 1), stride=(2, 2),
            use_global_stats=use_global_stats)
    #
    # conv1 = mx.sym.Convolution(data, name='1/conv',
    #         num_filter=36, kernel=(4, 4), pad=(1, 1), stride=(2, 2), no_bias=True)
    concat1 = mx.sym.concat(conv1, -conv1, name='1/concat')

    bn1 = batchnorm(concat1, '2/bn', use_global_stats)
    pool2 = mx.sym.Pooling(bn1, name='2/pool', kernel=(4, 4), pad=(1, 1), stride=(2, 2), pool_type='max')

    conv3 = depthwise_conv(pool2, '3/',
            nf_dw=72, nf_sep=72, n_pre_sfl=2, n_post_sfl=2,
github Nicatio / Densenet / mxnet / symbol_densenet.py View on Github external
def get_symbol(
    num_class,
    num_block,
    num_layer,
    growth_rate,
    dropout=0.,
    l2_reg=1e-4,
    init_channels=16
):
    n_channels = init_channels

    data = mx.symbol.Variable(name='data')
    #label = mx.sym.Variable("label")
    conv = mx.symbol.Convolution(
        name="conv0",
        data=data,
        num_filter=init_channels,
        kernel=(3, 3),
        stride=(1, 1),
        pad=(1, 1),
        no_bias=True
    )

    #conv = mx.symbol.Pooling(conv, name='conv0_pool', global_pool=False, kernel=(3,3), stride=(2,2), pool_type ='max')

    for i in range(num_block - 1):
        conv = dense_block(conv, num_layer, growth_rate, name = 'dense'+str(i)+'_',
                        dropout=dropout, l2_reg=l2_reg)
github msracver / Deformable-ConvNets / deeplab / symbols / resnet_v1_101_deeplab.py View on Github external
def get_train_symbol(self, num_classes):
        """
        get symbol for training
        :param num_classes: num of classes
        :return: the symbol for training
        """
        data = mx.symbol.Variable(name="data")
        seg_cls_gt = mx.symbol.Variable(name='label')

        # shared convolutional layers
        conv_feat = self.get_resnet_conv(data)

        # subsequent fc layers by haozhi
        fc6_bias = mx.symbol.Variable('fc6_bias', lr_mult=2.0)
        fc6_weight = mx.symbol.Variable('fc6_weight', lr_mult=1.0)

        fc6 = mx.symbol.Convolution(data=conv_feat, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="fc6",
                                    bias=fc6_bias, weight=fc6_weight, workspace=self.workspace)
        relu_fc6 = mx.sym.Activation(data=fc6, act_type='relu', name='relu_fc6')

        score_bias = mx.symbol.Variable('score_bias', lr_mult=2.0)
        score_weight = mx.symbol.Variable('score_weight', lr_mult=1.0)

        score = mx.symbol.Convolution(data=relu_fc6, kernel=(1, 1), pad=(0, 0), num_filter=num_classes, name="score",
                                      bias=score_bias, weight=score_weight, workspace=self.workspace)

        upsampling = mx.symbol.Deconvolution(data=score, num_filter=num_classes, kernel=(32, 32), stride=(16, 16),
                                             num_group=num_classes, no_bias=True, name='upsampling',
                                             attr={'lr_mult': '0.0'}, workspace=self.workspace)

        croped_score = mx.symbol.Crop(*[upsampling, data], offset=(8, 8), name='croped_score')
github lilhope / odnl / rcnn / symbol / symbol_vgg.py View on Github external
def get_vgg_rpn(num_anchors=config.NUM_ANCHORS):
    """
    Region Proposal Network with VGG
    :param num_anchors: used to determine output size
    :return: Symbol
    """
    data = mx.symbol.Variable(name="data")
    label = mx.symbol.Variable(name='label')
    bbox_target = mx.symbol.Variable(name='bbox_target')
    bbox_weight = mx.symbol.Variable(name='bbox_weight')

    # shared convolutional layers
    relu5_3 = get_vgg_conv(data)

    # RPN
    rpn_conv = mx.symbol.Convolution(
        data=relu5_3, kernel=(3, 3), pad=(1, 1), num_filter=512, name="rpn_conv_3x3")
    rpn_relu = mx.symbol.Activation(data=rpn_conv, act_type="relu", name="rpn_relu")
    rpn_cls_score = mx.symbol.Convolution(
        data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=2 * num_anchors, name="rpn_cls_score")
    rpn_bbox_pred = mx.symbol.Convolution(
        data=rpn_relu, kernel=(1, 1), pad=(0, 0), num_filter=4 * num_anchors, name="rpn_bbox_pred")
github huxiaoman7 / mxnet-cnn-plate-recognition / train.py View on Github external
def get_ocrnet():
    data = mx.symbol.Variable('data')
    label = mx.symbol.Variable('softmax_label')
    conv1 = mx.symbol.Convolution(data=data, kernel=(5,5), num_filter=32)
    pool1 = mx.symbol.Pooling(data=conv1, pool_type="max", kernel=(2,2), stride=(1, 1))
    relu1 = mx.symbol.Activation(data=pool1, act_type="relu")

    conv2 = mx.symbol.Convolution(data=relu1, kernel=(5,5), num_filter=32)
    pool2 = mx.symbol.Pooling(data=conv2, pool_type="avg", kernel=(2,2), stride=(1, 1))
    relu2 = mx.symbol.Activation(data=pool2, act_type="relu")

    conv3 = mx.symbol.Convolution(data=relu2, kernel=(3,3), num_filter=32)
    pool3 = mx.symbol.Pooling(data=conv3, pool_type="avg", kernel=(2,2), stride=(1, 1))
    relu3 = mx.symbol.Activation(data=pool3, act_type="relu")
    
    conv4 = mx.symbol.Convolution(data=relu3, kernel=(3,3), num_filter=32)
    pool4 = mx.symbol.Pooling(data=conv4, pool_type="avg", kernel=(2,2), stride=(1, 1))
    relu4 = mx.symbol.Activation(data=pool4, act_type="relu")
github tonysy / Deep-Feature-Flow-Segmentation / deeplab / symbols / resnet_v1_101_deeplab_video_dcn.py View on Github external
def get_train_symbol(self, num_classes):
        """
        get symbol for training
        :param num_classes: num of classes
        :return: the symbol for training
        """
        data = mx.symbol.Variable(name="data")
        seg_cls_gt = mx.symbol.Variable(name='label')

        # shared convolutional layers
        conv_feat = self.get_resnet_conv(data)

        # subsequent fc layers by haozhi
        fc6_bias = mx.symbol.Variable('fc6_bias', lr_mult=2.0)
        fc6_weight = mx.symbol.Variable('fc6_weight', lr_mult=1.0)

        fc6 = mx.symbol.Convolution(data=conv_feat, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="fc6",
                                    bias=fc6_bias, weight=fc6_weight, workspace=self.workspace)
        relu_fc6 = mx.sym.Activation(data=fc6, act_type='relu', name='relu_fc6')

        score_bias = mx.symbol.Variable('score_bias', lr_mult=2.0)
        score_weight = mx.symbol.Variable('score_weight', lr_mult=1.0)

        score = mx.symbol.Convolution(data=relu_fc6, kernel=(1, 1), pad=(0, 0), num_filter=num_classes, name="score",
                                      bias=score_bias, weight=score_weight, workspace=self.workspace)

        upsampling = mx.symbol.Deconvolution(data=score, num_filter=num_classes, kernel=(32, 32), stride=(16, 16),
                                             num_group=num_classes, no_bias=True, name='upsampling',
                                             attr={'lr_mult': '0.0'}, workspace=self.workspace)
github tonysy / Deep-Feature-Flow-Segmentation / deeplab / symbols / resnet_v1_101_deeplab_dcn_duc.py View on Github external
def get_test_symbol(self, num_classes):
        """
        get symbol for testing
        :param num_classes: num of classes
        :return: the symbol for testing
        """
        data = mx.symbol.Variable(name="data")

        # shared convolutional layers
        conv_feat = self.get_resnet_conv(data)

        fc6_bias = mx.symbol.Variable('fc6_bias', lr_mult=2.0)
        fc6_weight = mx.symbol.Variable('fc6_weight', lr_mult=1.0)

        fc6 = mx.symbol.Convolution(
            data=conv_feat, kernel=(1, 1), pad=(0, 0), num_filter=1024, name="fc6", bias=fc6_bias, weight=fc6_weight,
            workspace=self.workspace)
        relu_fc6 = mx.sym.Activation(data=fc6, act_type='relu', name='relu_fc6')

        score_bias = mx.symbol.Variable('score_bias', lr_mult=2.0)
        score_weight = mx.symbol.Variable('score_weight', lr_mult=1.0)

        score = mx.symbol.Convolution(
            data=relu_fc6, kernel=(1, 1), pad=(0, 0), num_filter=num_classes, name="score", bias=score_bias,
            weight=score_weight, workspace=self.workspace)

        upsampling = mx.symbol.Deconvolution(
            data=score, num_filter=num_classes, kernel=(32, 32), stride=(16, 16), num_group=num_classes, no_bias=True,