How to use the mxnet.nd.zeros function in mxnet

To help you get started, we’ve selected a few mxnet examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github zuoqing1988 / train-ssd / dataset / iterator.py View on Github external
def _get_batch(self):
        """
        Load data/label from dataset
        """
        batch_data = mx.nd.zeros((self.batch_size, 3, self._data_shape[0], self._data_shape[1]))
        batch_label = []
        for i in range(self.batch_size):
            if (self._current + i) >= self._size:
                if not self.is_train:
                    continue
                # use padding from middle in each epoch
                idx = (self._current + i + self._size // 2) % self._size
                index = self._index[idx]
            else:
                index = self._index[self._current + i]
            # index = self.debug_index
            im_path = self._imdb.image_path_from_index(index)
            with open(im_path, 'rb') as fp:
                img_content = fp.read()
            img = mx.img.imdecode(img_content)
            #print(img)
github hpi-xnor / BMXNet-v2 / tests / python / distributed / test_kvstore.py View on Github external
def test_sync_push_pull():
    nrepeat = 2
    for i in range(nrepeat):
        kv.push(3, mx.nd.ones(shape)*(my_rank+1))
        kv.push(99, mx.nd.ones(big_shape)*(my_rank+1))

    kv._wait([3, 99])
    num = (nworker + 1 ) * nworker * rate / 2 * nrepeat + 1
    val = mx.nd.zeros(shape)
    kv.pull(3, out = val)
    check_diff_to_scalar(val, num)

    val2 = mx.nd.zeros(big_shape)
    kv.pull(99, out = val2)
    check_diff_to_scalar(val2, num)
    # print val.asnumpy()
github awslabs / gluon-ts / test / distribution / test_distribution_inference.py View on Github external
def test_laplace(mu_b: Tuple[float, float], hybridize: bool) -> None:
    """
    Test to check that maximizing the likelihood recovers the parameters
    """
    # test instance
    mu, b = mu_b

    # generate samples
    mus = mx.nd.zeros((NUM_SAMPLES,)) + mu
    bs = mx.nd.zeros((NUM_SAMPLES,)) + b

    laplace_distr = Laplace(mu=mus, b=bs)
    samples = laplace_distr.sample()

    init_biases = [
        mu - START_TOL_MULTIPLE * TOL * mu,
        inv_softplus(b + START_TOL_MULTIPLE * TOL * b),
    ]

    mu_hat, b_hat = maximum_likelihood_estimate_sgd(
        LaplaceOutput(), samples, hybridize=hybridize, init_biases=init_biases
    )

    assert (
        np.abs(mu_hat - mu) < TOL * mu
    ), f"mu did not match: mu = {mu}, mu_hat = {mu_hat}"
github hpi-xnor / BMXNet-v2 / tests / python / unittest / test_module.py View on Github external
def test_module_initializer():
    def regression_model(m):
         x = mx.symbol.var("data", stype='csr')
         v = mx.symbol.var("v", shape=(m, 1), init=mx.init.Uniform(scale=.1),
                                stype='row_sparse')
         model = mx.symbol.dot(lhs=x, rhs=v)
         y = mx.symbol.Variable("label")
         model = mx.symbol.LinearRegressionOutput(data=model, label=y, name="out")
         return model

    n, m = 128, 100
    model = regression_model(m)

    data = mx.nd.zeros(shape=(n, m), stype='csr')
    label = mx.nd.zeros((n, 1))
    iterator = mx.io.NDArrayIter(data=data, label={'label':label},
                                 batch_size=n, last_batch_handle='discard')

    # create module
    mod = mx.mod.Module(symbol=model, data_names=['data'], label_names=['label'])
    mod.bind(data_shapes=iterator.provide_data, label_shapes=iterator.provide_label)
    mod.init_params()
    v = mod._arg_params['v']
    assert(v.stype == 'row_sparse')
    assert(np.sum(v.asnumpy()) != 0)
github dmlc / dgl / tests / mxnet / test_basics.py View on Github external
def _init2(shape, dtype, ctx, ids):
        return 2 + mx.nd.zeros(shape, dtype=dtype, ctx=ctx)
    g.set_n_initializer(_init2, 'h')
github osmr / imgclsmob / gluon / gluoncv2 / models / shufflenet.py View on Github external
continue
            weight_count += np.prod(param.shape)
        print("m={}, {}".format(model.__name__, weight_count))
        assert (model != shufflenet_g1_w1 or weight_count == 1531936)
        assert (model != shufflenet_g2_w1 or weight_count == 1733848)
        assert (model != shufflenet_g3_w1 or weight_count == 1865728)
        assert (model != shufflenet_g4_w1 or weight_count == 1968344)
        assert (model != shufflenet_g8_w1 or weight_count == 2434768)
        assert (model != shufflenet_g1_w3d4 or weight_count == 975214)
        assert (model != shufflenet_g3_w3d4 or weight_count == 1238266)
        assert (model != shufflenet_g1_wd2 or weight_count == 534484)
        assert (model != shufflenet_g3_wd2 or weight_count == 718324)
        assert (model != shufflenet_g1_wd4 or weight_count == 209746)
        assert (model != shufflenet_g3_wd4 or weight_count == 305902)

        x = mx.nd.zeros((1, 3, 224, 224), ctx=ctx)
        y = net(x)
        assert (y.shape == (1, 1000))
github n8886919 / YOLO / licence_plate / LP_detection.py View on Github external
def _loss_mask_LP(self, label_batch, gpu_index):
        """Generate training targets given predictions and label_batch.
        label_batch: bs*object*[class, cent_y, cent_x, box_h, box_w, rotate]
        """
        bs = label_batch.shape[0]
        ctx = self.ctx[gpu_index]
        h_ = self.size[0] / 2**self.num_downsample
        w_ = self.size[1] / 2**self.num_downsample

        score = nd.zeros((bs, h_, w_, 1), ctx=ctx)
        mask = nd.zeros((bs, h_, w_, 1), ctx=ctx)
        pose_xy = nd.zeros((bs, h_, w_, 2), ctx=ctx)
        pose_z = nd.zeros((bs, h_, w_, 1), ctx=ctx)
        pose_r = nd.zeros((bs, h_, w_, 3), ctx=ctx)
        LP_class = nd.zeros((bs, h_, w_, self.LP_num_class), ctx=ctx)

        for b in range(bs):
            for L in label_batch[b]:  # all object in the image
                if L[0] < 0:
                    continue

                else:
                    (h_f, w_f), p_6D = self._find_best_LP(L, gpu_index)
                    score[b, h_f, w_f, :] = 1.0  # others are zero
                    mask[b, h_f, w_f, :] = 1.0  # others are zero
                    pose_xy[b, h_f, w_f, :] = p_6D[:2]
                    pose_z[b, h_f, w_f, :] = p_6D[2]
                    pose_r[b, h_f, w_f, :] = p_6D[3:]
                    LP_class[b, h_f, w_f, L[-1]] = 1
github deepinsight / insightface / src / spherenet.py View on Github external
aux_params = None
  #print(aaa)
  #print(aux_shape)
  arg_shape_dict = dict(zip(arg_name, arg_shape))
  aux_shape_dict = dict(zip(aux_name, aux_shape))
  #print(aux_shape)
  #print(aux_params)
  #print(arg_shape_dict)
  for k,v in arg_shape_dict.iteritems():
    if k.startswith('conv') and k.endswith('_weight'):
      if not k.find('_1_')>=0:
        if num_layers<100:
          arg_params[k] = mx.random.normal(0, 0.01, shape=v)
          print('init', k)
    if k.endswith('_bias'):
      arg_params[k] = mx.nd.zeros(shape=v)
      print('init', k)
  return arg_params, aux_params
github awslabs / deeplearning-benchmark / word_language_model / word_language_model.py View on Github external
def eval(data_source, ctx):
    total_L = 0.0
    ntotal = 0
    hidden_states = [
        model.begin_state(func=mx.nd.zeros, batch_size=int(args.batch_size/len(ctx)), ctx=ctx[i])
        for i in range(len(ctx))
    ]
    for i in range(0, data_source.shape[0] - 1, args.bptt):
        data_batch, target_batch = get_batch(data_source, i)
        data = gluon.utils.split_and_load(data_batch, ctx_list=ctx, batch_axis=1)
        target = gluon.utils.split_and_load(target_batch, ctx_list=ctx, batch_axis=1)
        for (d, t) in zip(data, target):
            hidden = hidden_states[d.context.device_id]
            output, hidden = model(d, hidden)
            L = loss(output, t.reshape((-1,)))
            total_L += mx.nd.sum(L).asscalar()
            ntotal += L.size
    return total_L / ntotal
github mahyarnajibi / SNIPER / symbols / faster / symbol_dpn_98_cls.py View on Github external
def init_weight_rcnn(self, cfg, arg_params, aux_params):
	'''arg_params['conv_new_1_bn_beta'] = mx.nd.zeros(shape=self.arg_shape_dict['conv_new_1_bn_beta'])
        arg_params['conv_new_1_bn_gamma'] = mx.nd.ones(shape=self.arg_shape_dict['conv_new_1_bn_gamma'])
        aux_params['conv_new_1_bn_moving_mean'] = mx.nd.zeros(shape=self.aux_shape_dict['conv_new_1_bn_moving_mean'])
        aux_params['conv_new_1_bn_moving_var'] = mx.nd.ones(shape=self.aux_shape_dict['conv_new_1_bn_moving_var'])'''
        
        arg_params['conv5_x__1_c3x3-b__offset_weight'] = mx.nd.zeros(
            shape=self.arg_shape_dict['conv5_x__1_c3x3-b__offset_weight'])
        arg_params['conv5_x__1_c3x3-b__offset_bias'] = mx.nd.zeros(
            shape=self.arg_shape_dict['conv5_x__1_c3x3-b__offset_bias'])
        arg_params['conv5_x__2_c3x3-b__offset_weight'] = mx.nd.zeros(
            shape=self.arg_shape_dict['conv5_x__2_c3x3-b__offset_weight'])
        arg_params['conv5_x__2_c3x3-b__offset_bias'] = mx.nd.zeros(
            shape=self.arg_shape_dict['conv5_x__2_c3x3-b__offset_bias'])
        arg_params['conv5_x__3_c3x3-b__offset_weight'] = mx.nd.zeros(
            shape=self.arg_shape_dict['conv5_x__3_c3x3-b__offset_weight'])
        arg_params['conv5_x__3_c3x3-b__offset_bias'] = mx.nd.zeros(
            shape=self.arg_shape_dict['conv5_x__3_c3x3-b__offset_bias'])

        arg_params['conv_new_1_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['conv_new_1_weight'])
        arg_params['conv_new_1_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['conv_new_1_bias'])
        arg_params['offset_weight'] = mx.nd.zeros(shape=self.arg_shape_dict['offset_weight'])
        arg_params['offset_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['offset_bias'])
        arg_params['fc_new_1_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['fc_new_1_weight'])
        arg_params['fc_new_1_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['fc_new_1_bias'])
        arg_params['fc_new_2_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['fc_new_2_weight'])
        arg_params['fc_new_2_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['fc_new_2_bias'])
        arg_params['cls_score_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['cls_score_weight'])
        arg_params['cls_score_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['cls_score_bias'])
        arg_params['bbox_pred_weight'] = mx.random.normal(0, 0.01, shape=self.arg_shape_dict['bbox_pred_weight'])
        arg_params['bbox_pred_bias'] = mx.nd.zeros(shape=self.arg_shape_dict['bbox_pred_bias'])