Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
ori_shape = (img_info['height'], img_info['width'], 3)
img_meta = dict(
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=flip)
data = dict(
img=DC(to_tensor(img), stack=True),
img_meta=DC(img_meta, cpu_only=True),
gt_bboxes=DC(to_tensor(gt_bboxes)))
if self.with_label:
data['gt_labels'] = DC(to_tensor(gt_labels))
if self.with_crowd:
data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
if self.with_mask:
data['gt_masks'] = DC(gt_masks, cpu_only=True)
#--------------------offline ray label generation-----------------------------
self.center_sample = True
self.use_mask_center = True
self.radius = 1.5
self.strides = [8, 16, 32, 64, 128]
self.regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),(512, INF))
featmap_sizes = self.get_featmap_size(pad_shape)
self.featmap_sizes = featmap_sizes
num_levels = len(self.strides)
gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape,
scale_factor, flip)
if self.with_mask:
gt_masks = self.mask_transform(ann['masks'], pad_shape,
scale_factor, flip)
ori_shape = (img_info['height'], img_info['width'], 3)
img_meta = dict(
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=flip)
data = dict(
img=DC(to_tensor(img), stack=True),
img_meta=DC(img_meta, cpu_only=True),
gt_bboxes=DC(to_tensor(gt_bboxes)))
if self.with_label:
data['gt_labels'] = DC(to_tensor(gt_labels))
if self.with_crowd:
data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
if self.with_mask:
data['gt_masks'] = DC(gt_masks, cpu_only=True)
#--------------------offline ray label generation-----------------------------
self.center_sample = True
self.use_mask_center = True
self.radius = 1.5
scale_factor, flip)
if self.with_mask:
gt_masks = self.mask_transform(ann['masks'], pad_shape,
scale_factor, flip)
ori_shape = (img_info['height'], img_info['width'], 3)
img_meta = dict(
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=flip)
data = dict(
img=DC(to_tensor(img), stack=True),
img_meta=DC(img_meta, cpu_only=True),
gt_bboxes=DC(to_tensor(gt_bboxes)))
if self.proposals is not None:
data['proposals'] = DC(to_tensor(proposals))
if self.with_label:
data['gt_labels'] = DC(to_tensor(gt_labels))
if self.with_crowd:
data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
if self.with_mask:
data['gt_masks'] = DC(gt_masks, cpu_only=True)
return data
scale_factor, flip)
if self.with_mask:
gt_masks = self.mask_transform(ann['masks'], pad_shape,
scale_factor, flip)
ori_shape = (img_info['height'], img_info['width'], 3)
img_meta = dict(
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=flip)
data = dict(
img=DC(to_tensor(img), stack=True),
img_meta=DC(img_meta, cpu_only=True),
gt_bboxes=DC(to_tensor(gt_bboxes)))
if self.proposals is not None:
data['proposals'] = DC(to_tensor(proposals))
if self.with_label:
data['gt_labels'] = DC(to_tensor(gt_labels))
if self.with_crowd:
data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
if self.with_mask:
data['gt_masks'] = DC(gt_masks, cpu_only=True)
return data
for i, (modality, image_tmpl) in enumerate(
zip(self.modalities, self.image_tmpls)):
img_group = self._get_frames(
video_info, image_tmpl, modality, indice, skip_offsets)
img_groups = []
img_metas = []
proposals = []
for scale in self.img_scales:
_img_group, _img_meta, _proposal = prepare_single(
img_group, scale, None, False, proposal)
if self.input_format == "NCTHW":
# Convert [L x C x H x W] to [C x L x H x W]
_img_group = np.transpose(_img_group, (1, 0, 2, 3))
img_groups.append(_img_group)
img_metas.append(DC(_img_meta, cpu_only=True))
proposals.append(_proposal)
if self.flip_ratio > 0:
_img_group, _img_meta, _proposal = prepare_single(
img_group, scale, None, True, proposal)
if self.input_format == "NCTHW":
# Convert [L x C x H x W] to [C x L x H x W]
_img_group = np.transpose(_img_group, (1, 0, 2, 3))
img_groups.append(_img_group)
img_metas.append(DC(_img_meta, cpu_only=True))
proposals.append(_proposal)
data['img_group_{}'.format(i)] = img_groups
if i == 0:
data['img_meta'] = img_metas
if self.proposals is not None:
data['proposals'] = proposals
if self.with_mask:
gt_masks = self.mask_transform(ann['masks'], pad_shape,
scale_factor, flip)
ori_shape = (img_info['height'], img_info['width'], 3)
img_meta = dict(
id = img_info['id'],
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=flip)
data = dict(
img=DC(to_tensor(img), stack=True),
img_meta=DC(img_meta, cpu_only=True),
gt_bboxes=DC(to_tensor(gt_bboxes)))
if self.proposals is not None:
data['proposals'] = DC(to_tensor(proposals))
if self.with_label:
data['gt_labels'] = DC(to_tensor(gt_labels))
if self.with_crowd:
data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
if self.with_mask:
data['gt_masks'] = DC(gt_masks, cpu_only=True)
if self.with_seg:
data['gt_semantic_seg'] = DC(to_tensor(gt_seg), stack=True)
return data
finally:
img_info.dispose()
if self.with_mask:
gt_masks = self.mask_transform(ann['masks'], pad_shape,
scale_factor, flip)
ori_shape = (img_info['height'], img_info['width'], 3)
img_meta = dict(
ori_shape=ori_shape,
img_shape=img_shape,
pad_shape=pad_shape,
scale_factor=scale_factor,
flip=flip)
data = dict(
img=DC(to_tensor(img), stack=True),
img_meta=DC(img_meta, cpu_only=True),
gt_bboxes=DC(to_tensor(gt_bboxes)))
if self.proposals is not None:
data['proposals'] = DC(to_tensor(proposals))
if self.with_label:
data['gt_labels'] = DC(to_tensor(gt_labels))
if self.with_crowd:
data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
if self.with_mask:
data['gt_masks'] = DC(gt_masks, cpu_only=True)
return data
def __call__(self, results):
if 'img' in results:
img = np.ascontiguousarray(results['img'].transpose(2, 0, 1))
results['img'] = DC(to_tensor(img), stack=True)
for key in ['proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels']:
if key not in results:
continue
results[key] = DC(to_tensor(results[key]))
if 'gt_masks' in results:
results['gt_masks'] = DC(results['gt_masks'], cpu_only=True)
if 'gt_semantic_seg' in results:
results['gt_semantic_seg'] = DC(
to_tensor(results['gt_semantic_seg'][None, ...]), stack=True)
return results
all_level_points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
all_level_points[i]) for i in range(num_levels)
]
concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
concat_points = torch.cat(all_level_points, 0)
gt_masks = gt_masks[:len(gt_bboxes)]
gt_bboxes = torch.Tensor(gt_bboxes)
gt_labels = torch.Tensor(gt_labels)
_labels, _bbox_targets, _mask_targets = self.polar_target_single(
gt_bboxes,gt_masks,gt_labels,concat_points, concat_regress_ranges)
data['_gt_labels'] = DC(_labels)
data['_gt_bboxes'] = DC(_bbox_targets)
data['_gt_masks'] = DC(_mask_targets)
#--------------------offline ray label generation-----------------------------
return data
expanded_regress_ranges = [
all_level_points[i].new_tensor(self.regress_ranges[i])[None].expand_as(
all_level_points[i]) for i in range(num_levels)
]
concat_regress_ranges = torch.cat(expanded_regress_ranges, dim=0)
concat_points = torch.cat(all_level_points, 0)
gt_masks = gt_masks[:len(gt_bboxes)]
gt_bboxes = torch.Tensor(gt_bboxes)
gt_labels = torch.Tensor(gt_labels)
_labels, _bbox_targets, _mask_targets = self.polar_target_single(
gt_bboxes,gt_masks,gt_labels,concat_points, concat_regress_ranges)
data['_gt_labels'] = DC(_labels)
data['_gt_bboxes'] = DC(_bbox_targets)
data['_gt_masks'] = DC(_mask_targets)
#--------------------offline ray label generation-----------------------------
return data