How to use the mmcv.imrescale function in mmcv

To help you get started, we’ve selected a few mmcv examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github open-mmlab / mmcv / tests / test_image.py View on Github external
def test_imrescale(self):
        # rescale by a certain factor
        resized_img = mmcv.imrescale(self.img, 1.5)
        assert resized_img.shape == (450, 600, 3)
        resized_img = mmcv.imrescale(self.img, 0.934)
        assert resized_img.shape == (280, 374, 3)

        # rescale by a certain max_size
        # resize (400, 300) to (max_1000, max_600)
        resized_img = mmcv.imrescale(self.img, (1000, 600))
        assert resized_img.shape == (600, 800, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (1000, 600), return_scale=True)
        assert resized_img.shape == (600, 800, 3) and scale == 2.0
        # resize (400, 300) to (max_200, max_180)
        resized_img = mmcv.imrescale(self.img, (180, 200))
        assert resized_img.shape == (150, 200, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (180, 200), return_scale=True)
        assert resized_img.shape == (150, 200, 3) and scale == 0.5

        # test exceptions
        with pytest.raises(ValueError):
            mmcv.imrescale(self.img, -0.5)
        with pytest.raises(TypeError):
            mmcv.imrescale(self.img, [100, 100])
github open-mmlab / mmcv / tests / test_image.py View on Github external
assert resized_img.shape == (600, 800, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (1000, 600), return_scale=True)
        assert resized_img.shape == (600, 800, 3) and scale == 2.0
        # resize (400, 300) to (max_200, max_180)
        resized_img = mmcv.imrescale(self.img, (180, 200))
        assert resized_img.shape == (150, 200, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (180, 200), return_scale=True)
        assert resized_img.shape == (150, 200, 3) and scale == 0.5

        # test exceptions
        with pytest.raises(ValueError):
            mmcv.imrescale(self.img, -0.5)
        with pytest.raises(TypeError):
            mmcv.imrescale(self.img, [100, 100])
github open-mmlab / mmcv / tests / test_image.py View on Github external
resized_img = mmcv.imrescale(self.img, 1.5)
        assert resized_img.shape == (450, 600, 3)
        resized_img = mmcv.imrescale(self.img, 0.934)
        assert resized_img.shape == (280, 374, 3)

        # rescale by a certain max_size
        # resize (400, 300) to (max_1000, max_600)
        resized_img = mmcv.imrescale(self.img, (1000, 600))
        assert resized_img.shape == (600, 800, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (1000, 600), return_scale=True)
        assert resized_img.shape == (600, 800, 3) and scale == 2.0
        # resize (400, 300) to (max_200, max_180)
        resized_img = mmcv.imrescale(self.img, (180, 200))
        assert resized_img.shape == (150, 200, 3)
        resized_img, scale = mmcv.imrescale(
            self.img, (180, 200), return_scale=True)
        assert resized_img.shape == (150, 200, 3) and scale == 0.5

        # test exceptions
        with pytest.raises(ValueError):
            mmcv.imrescale(self.img, -0.5)
        with pytest.raises(TypeError):
            mmcv.imrescale(self.img, [100, 100])
github ming71 / mmdetection-annotated / mmdet / datasets / transforms.py View on Github external
def __call__(self, masks, pad_shape, scale_factor, flip=False):
        masks = [
            mmcv.imrescale(mask, scale_factor, interpolation='nearest')
            for mask in masks
        ]
        if flip:
            masks = [mask[:, ::-1] for mask in masks]
        padded_masks = [
            mmcv.impad(mask, pad_shape[:2], pad_val=0) for mask in masks
        ]
        padded_masks = np.stack(padded_masks, axis=0)
        return padded_masks
github kemaloksuz / BoundingBoxGenerator / mmdet / datasets / pipelines / transforms.py View on Github external
def _resize_seg(self, results):
        for key in results.get('seg_fields', []):
            if self.keep_ratio:
                gt_seg = mmcv.imrescale(
                    results[key], results['scale'], interpolation='nearest')
            else:
                gt_seg = mmcv.imresize(
                    results[key], results['scale'], interpolation='nearest')
            results['gt_semantic_seg'] = gt_seg
github xieenze / PolarMask / mmdet / datasets / coco_seg.py View on Github external
# apply transforms
        flip = True if np.random.rand() < self.flip_ratio else False
        # randomly sample a scale
        img_scale = random_scale(self.img_scales, self.multiscale_mode)
        img, img_shape, pad_shape, scale_factor = self.img_transform(img, img_scale, flip, keep_ratio=self.resize_keep_ratio)


        img = img.copy()
        if self.with_seg:
            gt_seg = mmcv.imread(
                osp.join(self.seg_prefix,
                         img_info['filename'].replace('jpg', 'png')),
                flag='unchanged')
            gt_seg = self.seg_transform(gt_seg.squeeze(), img_scale, flip)
            gt_seg = mmcv.imrescale(
                gt_seg, self.seg_scale_factor, interpolation='nearest')
            gt_seg = gt_seg[None, ...]
        if self.proposals is not None:
            proposals = self.bbox_transform(proposals, img_shape, scale_factor,
                                            flip)
            proposals = np.hstack([proposals, scores
                                   ]) if scores is not None else proposals
        gt_bboxes = self.bbox_transform(gt_bboxes, img_shape, scale_factor,
                                        flip)
        if self.with_crowd:
            gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape,
                                                   scale_factor, flip)
        if self.with_mask:
            gt_masks = self.mask_transform(ann['masks'], pad_shape,
                                           scale_factor, flip)
github open-mmlab / mmaction / mmaction / datasets / transforms.py View on Github external
def __call__(self, img_group, scale, crop_history=None, flip=False,
                 keep_ratio=True, div_255=False, is_flow=False):
        # 1. rescale
        if keep_ratio:
            tuple_list = [mmcv.imrescale(
                img, scale, return_scale=True) for img in img_group]
            img_group, scale_factors = list(zip(*tuple_list))
            scale_factor = scale_factors[0]
        else:
            tuple_list = [mmcv.imresize(
                img, scale, return_scale=True) for img in img_group]
            img_group, w_scales, h_scales = list(zip(*tuple_list))
            scale_factor = np.array([w_scales[0], h_scales[0],
                                     w_scales[0], h_scales[0]],
                                    dtype=np.float32)

        # 2. crop (if necessary)
        if crop_history is not None:
            self.op_crop = GroupCrop(crop_history)
        if self.op_crop is not None:
            img_group, crop_quadruple = self.op_crop(
github open-mmlab / mmaction / mmaction / datasets / transforms.py View on Github external
def __call__(self, img, scale, flip=False, keep_ratio=True):
        if keep_ratio:
            img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
        else:
            img, w_scale, h_scale = mmcv.imresize(
                img, scale, return_scale=True)
            scale_factor = np.array([w_scale, h_scale, w_scale, h_scale],
                                    dtype=np.float32)
        img_shape = img.shape
        img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
        if flip:
            img = mmcv.imflip(img)
        if self.size_divisor is not None:
            img = mmcv.impad_to_multiple(img, self.size_divisor)
            pad_shape = img.shape
        else:
            pad_shape = img_shape
        img = img.transpose(2, 0, 1)
        return img, img_shape, pad_shape, scale_factor
github open-mmlab / mmdetection / mmdet / datasets / pipelines / transforms.py View on Github external
def _resize_masks(self, results):
        for key in results.get('mask_fields', []):
            if results[key] is None:
                continue
            if self.keep_ratio:
                masks = [
                    mmcv.imrescale(
                        mask, results['scale_factor'], interpolation='nearest')
                    for mask in results[key]
                ]
            else:
                mask_size = (results['img_shape'][1], results['img_shape'][0])
                masks = [
                    mmcv.imresize(mask, mask_size, interpolation='nearest')
                    for mask in results[key]
                ]
            results[key] = masks