Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def init_weights(self):
if not self.use_dcn:
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
for m in self.mask_convs:
normal_init(m.conv, std=0.01)
else:
pass
bias_cls = bias_init_with_prob(0.01)
normal_init(self.polar_cls, std=0.01, bias=bias_cls)
normal_init(self.polar_reg, std=0.01)
normal_init(self.polar_mask, std=0.01)
normal_init(self.polar_centerness, std=0.01)
def init_weights(self):
normal_init(self.conv_cls, std=0.01)
normal_init(self.conv_reg, std=0.01)
def init_weights(self):
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.reppoints_cls_conv, std=0.01)
normal_init(self.reppoints_cls_out, std=0.01, bias=bias_cls)
normal_init(self.reppoints_pts_init_conv, std=0.01)
normal_init(self.reppoints_pts_init_out, std=0.01)
normal_init(self.reppoints_pts_refine_conv, std=0.01)
normal_init(self.reppoints_pts_refine_out, std=0.01)
def init_weights(self):
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
self.feature_adaption_cls.init_weights()
self.feature_adaption_reg.init_weights()
bias_cls = bias_init_with_prob(0.01)
normal_init(self.conv_loc, std=0.01, bias=bias_cls)
normal_init(self.conv_shape, std=0.01)
normal_init(self.retina_cls, std=0.01, bias=bias_cls)
normal_init(self.retina_reg, std=0.01)
def init_weights(self):
normal_init(self.conv_cls, std=0.01)
normal_init(self.conv_reg, std=0.01)
def init_weights(self):
normal_init(self.conv_cls, std=0.01)
normal_init(self.conv_reg, std=0.01)
def init_weights(self):
normal_init(self.rpn_conv, std=0.01)
normal_init(self.rpn_cls, std=0.01)
normal_init(self.rpn_reg, std=0.01)
def init_weights(self):
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.fcos_cls, std=0.01, bias=bias_cls)
normal_init(self.fcos_reg, std=0.01)
normal_init(self.fcos_centerness, std=0.01)
def init_weights(self):
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
self.feature_adaption_cls.init_weights()
self.feature_adaption_reg.init_weights()
bias_cls = bias_init_with_prob(0.01)
normal_init(self.conv_loc, std=0.01, bias=bias_cls)
normal_init(self.conv_shape, std=0.01)
normal_init(self.retina_cls, std=0.01, bias=bias_cls)
normal_init(self.retina_reg, std=0.01)
def init_weights(self):
if not self.use_dcn:
for m in self.cls_convs:
normal_init(m.conv, std=0.01)
for m in self.reg_convs:
normal_init(m.conv, std=0.01)
for m in self.mask_convs:
normal_init(m.conv, std=0.01)
else:
pass
bias_cls = bias_init_with_prob(0.01)
normal_init(self.fcos_cls, std=0.01, bias=bias_cls)
normal_init(self.fcos_reg, std=0.01)
normal_init(self.fcos_mask, std=0.01)
normal_init(self.fcos_centerness, std=0.01)