How to use the mahotas.imread function in mahotas

To help you get started, we’ve selected a few mahotas examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github luispedro / BuildingMachineLearningSystemsWithPython / ch10 / large_classification.py View on Github external
cv = cross_validation.KFold(len(ifeatures), 5, shuffle=True, random_state=123)
scores0 = cross_validation.cross_val_score(
    clf, ifeatures, labels, cv=cv)
print('Accuracy (5 fold x-val) with Logistic Regression [image features]: {:.1%}'.format(
    scores0.mean()))


from sklearn.cluster import KMeans
from mahotas.features import surf


print('Computing SURF descriptors...')
alldescriptors = []
for im,_ in images():
    im = mh.imread(im, as_grey=True)
    im = im.astype(np.uint8)

    # To use dense sampling, you can try the following line:
    # alldescriptors.append(surf.dense(im, spacing=16))
    alldescriptors.append(surf.surf(im, descriptor_only=True))

print('Descriptor computation complete.')
k = 256
km = KMeans(k)

concatenated = np.concatenate(alldescriptors)
print('Number of descriptors: {}'.format(
        len(concatenated)))
concatenated = concatenated[::64]
print('Clustering with K-means...')
km.fit(concatenated)
github luispedro / mahotas / mahotas / features_cli.py View on Github external
def read_bw(fname, options):
    '''Read image `fname` as greyscale

    Parameters
    ----------
    fname : str, file-name
    options : argparse result

    Returns
    -------
    image : ndarray
        Two dimensional ndarray
    '''
    im = mh.imread(fname)
    if im.ndim == 2:
        return im
    if im.ndim == 3:
        if options.convert_to_bw == 'max' or im.ptp(2).max() == 0:
            # This is a greyscale image, saved as colour
            return im.max(2)
        if options.convert_to_bw == 'yes':
            return mh.colors.rgb2grey(im, dtype=np.uint8)
    print_error("{} is not a greyscale image (and --convert-to-bw was not specified)".format(fname), not options.no_color)
    sys.exit(1)
github luispedro / BuildingMachineLearningSystemsWithPython / ch10 / figure18.py View on Github external
def features_for(images):
    fs = []
    for im in images:
        im = mh.imread(im, as_grey=True).astype(np.uint8)
        fs.append(mh.features.haralick(im).mean(0))
    return np.array(fs)
github luispedro / BuildingMachineLearningSystemsWithPython / ch10 / figure5_6.py View on Github external
# This code is supporting material for the book
# Building Machine Learning Systems with Python
# by Willi Richert and Luis Pedro Coelho
# published by PACKT Publishing
#
# It is made available under the MIT License

import numpy as np
import mahotas as mh
image = mh.imread('../SimpleImageDataset/building05.jpg')
image = mh.colors.rgb2gray(image)

# Compute Gaussian filtered versions with increasing kernel widths
im8  = mh.gaussian_filter(image,  8)
im16 = mh.gaussian_filter(image, 16)
im32 = mh.gaussian_filter(image, 32)

# We now build a composite image with three panels:
#
# [ IM8 | | IM16 | | IM32 ]

h, w = im8.shape
canvas = np.ones((h, 3 * w + 256), np.uint8)
canvas *= 255
canvas[:, :w] = im8
canvas[:, w + 128:2 * w + 128] = im16
github varshini24 / Electron-microscopic-image-segmentation-using-Deep-Learning / data_generation / trainingDatasetAligner.py View on Github external
def readImagesFromPaths(input_df):
	"""
	reads in the input_df with the image paths and updates it with the image content.

	Parameters: input_df - input file and target file paths
	"""

	image_content_column = []
	target_image_content_column = []
	for index, row in input_df.iterrows():

		image_content = mh.imread(row['input'], as_grey=True)
		#print image_content.shape
		#image_content.reshape(1024,1024,1)
		image_content = image_content.astype(np.float32, copy=False)
		image_content = np.reshape(image_content, (image_content.shape[0], image_content.shape[1],1))
		

		target_content = mh.imread(row['target'])
		#target_content.reshape(target_content.shape + (1,))
		target_content = target_content.astype(np.float32, copy=False)
		target_content = np.reshape(target_content, (target_content.shape[0], target_content.shape[1],1))
		


		image_content_column.append(image_content)
		target_image_content_column.append(target_content)
github luispedro / BuildingMachineLearningSystemsWithPython / ch12 / image-classification.py View on Github external
def chist(fname):
    from features import chist as color_histogram
    im = mh.imread(fname)
    return color_histogram(im)
github varshini24 / Electron-microscopic-image-segmentation-using-Deep-Learning / utils / input_image_maker.py View on Github external
def equalize(image):
	image = mh.imread(image)
	print image.shape

	image = exposure.equalize_adapthist(image)
	image = skimage.img_as_ubyte(image)
	print image.dtype

	return image