How to use the kornia.testing function in kornia

To help you get started, we’ve selected a few kornia examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github kornia / kornia / test / filters / test_gaussian.py View on Github external
def test_gradcheck(self, device):
        # test parameters
        batch_shape = (2, 3, 11, 7)
        kernel_size = (5, 3)
        sigma = (1.5, 2.1)

        # evaluate function gradient
        input = torch.rand(batch_shape).to(device)
        input = utils.tensor_to_gradcheck_var(input)  # to var
        assert gradcheck(
            kornia.gaussian_blur2d,
            (input, kernel_size, sigma, "replicate"),
            raise_exception=True,
        )
github kornia / kornia / test / color / test_rgb.py View on Github external
def test_gradcheck(self, device):

        # prepare input data
        data = torch.tensor([[[1., 1.],
                              [1., 1.]],

                             [[2., 2.],
                              [2., 2.]],

                             [[3., 3.],
                              [3., 3.]]])  # 3x2x2

        data = data.to(device)
        data = utils.tensor_to_gradcheck_var(data)  # to var

        assert gradcheck(kornia.color.BgrToRgb(), (data,),
                         raise_exception=True)
github kornia / kornia / test / feature / test_siftdesc.py View on Github external
def test_gradcheck(self):
        batch_size, channels, height, width = 1, 1, 41, 41
        patches = torch.rand(batch_size, channels, height, width)
        patches = utils.tensor_to_gradcheck_var(patches)  # to var
        assert gradcheck(sift_describe, (patches, 41),
                         raise_exception=True)
github kornia / kornia / test / test_contrib.py View on Github external
def test_gradcheck(self, device):
        input = torch.rand(2, 3, 4, 4).to(device)
        input = utils.tensor_to_gradcheck_var(input)  # to var
        assert gradcheck(kornia.contrib.max_blur_pool2d,
                         (input, 3,), raise_exception=True)
github kornia / kornia / test / color / test_normalize.py View on Github external
def test_gradcheck(self):

        # prepare input data
        data = torch.ones(2, 3, 1, 1)
        data += 2
        mean = torch.tensor([0.5, 1.0, 2.0]).double()
        std = torch.tensor([2., 2., 2.]).double()

        data = utils.tensor_to_gradcheck_var(data)  # to var

        assert gradcheck(kornia.color.Normalize(mean, std), (data,),
                         raise_exception=True)
github kornia / kornia / test / geometry / transform / test_crop.py View on Github external
def test_gradcheck(self, device):
        batch_size, channels, height, width = 1, 2, 5, 4
        img = torch.rand(batch_size, channels, height, width).to(device)
        img = utils.tensor_to_gradcheck_var(img)  # to var

        boxes = torch.tensor([[
            [1., 1.],
            [2., 1.],
            [2., 2.],
            [1., 2.],
        ]]).to(device)  # 1x4x2
        boxes = utils.tensor_to_gradcheck_var(
            boxes, requires_grad=False)  # to var

        crop_height, crop_width = 4, 2
        assert gradcheck(kornia.crop_and_resize,
                         (img, boxes, (crop_height, crop_width),),
                         raise_exception=True)
github kornia / kornia / test / color / test_core.py View on Github external
def test_gradcheck(self, size, device):
        shape = random_shape(size, max_elem=5)  # to shave time on gradcheck
        src1 = torch.randn(shape).to(device)
        src2 = torch.randn(shape).to(device)
        alpha = random.random()
        beta = random.random()
        gamma = random.random()

        src1 = utils.tensor_to_gradcheck_var(src1)  # to var
        src2 = utils.tensor_to_gradcheck_var(src2)  # to var

        assert gradcheck(kornia.color.AddWeighted(alpha, beta, gamma), (src1, src2),
                         raise_exception=True)
github kornia / kornia / test / color / test_adjust.py View on Github external
def test_gradcheck(self):
        batch_size, channels, height, width = 2, 3, 4, 5
        img = torch.ones(batch_size, channels, height, width)
        img = utils.tensor_to_gradcheck_var(img)  # to var
        assert gradcheck(kornia.adjust_brightness, (img, 2.),
                         raise_exception=True)
github kornia / kornia / test / geometry / warp / test_homography_warper.py View on Github external
def test_gradcheck(self, batch_shape, device_type):
        # generate input data
        device = torch.device(device_type)
        eye_size = 3  # identity 3x3

        # create checkerboard
        patch_src = torch.rand(batch_shape).to(device)
        patch_src = utils.tensor_to_gradcheck_var(patch_src)  # to var

        # create base homography
        batch_size, _, height, width = patch_src.shape
        dst_homo_src = utils.create_eye_batch(batch_size, eye_size)
        dst_homo_src = utils.tensor_to_gradcheck_var(
            dst_homo_src, requires_grad=False)  # to var

        # instantiate warper
        warper = kornia.HomographyWarper(height, width)

        # evaluate function gradient
        assert gradcheck(warper, (patch_src, dst_homo_src,),
                         raise_exception=True)
github kornia / kornia / test / geometry / test_spatial_softargmax.py View on Github external
def test_gradcheck(self, device):
        input = torch.rand(2, 3, 5, 5).to(device)
        input = utils.tensor_to_gradcheck_var(input)  # to var
        assert gradcheck(kornia.conv_soft_argmax2d,
                         (input), raise_exception=True)