How to use the kornia.filters function in kornia

To help you get started, we’ve selected a few kornia examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github kornia / kornia / test / filters / test_sobel.py View on Github external
def test_jit(self, device):
        @torch.jit.script
        def op_script(input):
            return kornia.filters.sobel(input)
        img = torch.rand(2, 3, 4, 5).to(device)
        actual = op_script(img)
        expected = kornia.filters.sobel(img)
        assert_allclose(actual, expected)
github kornia / kornia / test / filters / test_motion.py View on Github external
def test_jit(self, device):
        @torch.jit.script
        def op_script(
            input: torch.Tensor,
            ksize: int,
            angle: float,
            direction: float
        ) -> torch.Tensor:
            return kornia.filters.motion_blur(input, ksize, angle, direction)

        img = torch.rand(2, 3, 4, 5).to(device)
        ksize = 5
        angle = 65.
        direction = .1
        actual = op_script(img, ksize, angle, direction)
        expected = kornia.filters.motion_blur(img, ksize, angle, direction)
        assert_allclose(actual, expected)
github kornia / kornia / test / filters / test_sobel.py View on Github external
def test_gradcheck(self, device):
        batch_size, channels, depth, height, width = 1, 2, 3, 5, 4
        img = torch.rand(batch_size, channels, depth, height, width).to(device)
        img = utils.tensor_to_gradcheck_var(img)  # to var
        assert gradcheck(kornia.filters.spatial_gradient3d, (img,),
                         raise_exception=True)
github kornia / kornia / test / filters / test_sobel.py View on Github external
def test_shape_batch(self, device):
        inp = torch.zeros(3, 2, 4, 4).to(device)
        sobel = kornia.filters.Sobel()
        assert sobel(inp).shape == (3, 2, 4, 4)
github kornia / kornia / test / filters / test_gaussian.py View on Github external
def test_laplacian(self, batch_shape, device):
        kernel_size = 5

        input = torch.rand(batch_shape).to(device)
        laplace = kornia.filters.Laplacian(kernel_size)
        assert laplace(input).shape == batch_shape
github kornia / kornia / test / filters / test_median.py View on Github external
def op_script(input: torch.Tensor,
                      kernel_size: Tuple[int, int]) -> torch.Tensor:
            return kornia.filters.median_blur(input, kernel_size)
        kernel_size = (3, 5)
github kornia / kornia / test / filters / test_sobel.py View on Github external
expected = torch.tensor([[[[
            [0., 1., 0., -1., 0.],
            [1., 3., 0., -3., -1.],
            [2., 4., 0., -4., -2.],
            [1., 3., 0., -3., -1.],
            [0., 1., 0., -1., 0.],
        ], [
            [0., 1., 2., 1., 0.],
            [1., 3., 4., 3., 1.],
            [0., 0., 0., 0., 0],
            [-1., -3., -4., -3., -1],
            [0., -1., -2., -1., 0.],
        ]]]]).to(device)

        edges = kornia.filters.spatial_gradient(inp, normalized=False)
        assert_allclose(edges, expected)
github kornia / kornia / test / filters / test_sobel.py View on Github external
def op_script(input):
            return kornia.filters.spatial_gradient(input)
        img = torch.rand(2, 3, 4, 5).to(device)
github kornia / kornia / examples / gaussian_blur.py View on Github external
import torch
import kornia
import cv2
import numpy as np

import matplotlib.pyplot as plt

# read the image with OpenCV
img: np.ndarray = cv2.imread('./data/lena.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# convert to torch tensor
data: torch.tensor = kornia.image_to_tensor(img, keepdim=False)  # BxCxHxW

# create the operator
gauss = kornia.filters.GaussianBlur2d((11, 11), (10.5, 10.5))

# blur the image
x_blur: torch.tensor = gauss(data.float())

# convert back to numpy
img_blur: np.ndarray = kornia.tensor_to_image(x_blur.byte())

# Create the plot
fig, axs = plt.subplots(1, 2, figsize=(16, 10))
axs = axs.ravel()

axs[0].axis('off')
axs[0].set_title('image source')
axs[0].imshow(img)

axs[1].axis('off')