Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_capsule_correctness():
X = np.random.random((1, 1, 1))
model = Sequential()
model.add(capsule.Capsule(1, 1, 1, True, activation='sigmoid'))
model.compile(loss='mse', optimizer='rmsprop')
init_out = model.predict(X) # mock predict call to initialize weights
model.set_weights([np.zeros((1, 1, 1))])
out = model.predict(X)
assert_allclose(out, np.zeros((1, 1, 1), dtype=K.floatx()) + 0.5, atol=1e-5)
maxlen = 80
batch_size = 32
print('下载数据...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features)
print(len(x_train), '训练序列')
print(len(x_test), '测试序列')
print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=maxlen)
x_test = sequence.pad_sequences(x_test, maxlen=maxlen)
print('训练数据 shape:', x_train.shape)
print('测试数据 shape:', x_test.shape)
print('构建模型...')
model = Sequential()
#嵌入词向量
model.add(Embedding(max_features, 128))
#LSTM层
model.add(LSTM(128, dropout=0.2, recurrent_dropout=0.2))
#全连接层
model.add(Dense(1, activation='sigmoid'))
#打印构建模型的信息
model.summary()
#模型编译
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
print('开始训练...')
model.fit(x_train, y_train,batch_size=batch_size,epochs=3,validation_data=(x_test, y_test))
score, acc = model.evaluate(x_test, y_test,batch_size=batch_size)
print('Test score:', score)
def build_model(self):
model = Sequential()
model.add(Convolution2D(32, 8, 8, subsample=(4, 4), border_mode='same', input_shape=env.observation_space.shape, activation='relu'))
model.add(Convolution2D(64, 4, 4, subsample=(2, 2), border_mode='same', activation='relu'))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode='same', activation='relu'))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(env.action_space.n, activation='sigmoid'))
return model
action_predictor_model.add(Dense(32, activation='relu', input_dim=apdataX.shape[1]))
#action_predictor_model.add(Dropout(0.5))
action_predictor_model.add(Dense(32, activation='relu'))
#action_predictor_model.add(Dropout(0.5))
action_predictor_model.add(Dense(32, activation='relu'))
#action_predictor_model.add(Dropout(0.5))
action_predictor_model.add(Dense(apdataY.shape[1]))
#opt2 = optimizers.adam(lr=apLearning_rate)
opt2 = optimizers.Adadelta()
action_predictor_model.compile(loss='mse', optimizer=opt2, metrics=['accuracy'])
#initialize the action predictor model
noisy_model = Sequential()
#model.add(Dense(num_env_variables+num_env_actions, activation='tanh', input_dim=dataX.shape[1]))
noisy_model.add(Dense(32, activation='relu', input_dim=apdataX.shape[1]))
#noisy_model.add(Dropout(0.5))
noisy_model.add(Dense(32, activation='relu'))
#noisy_model.add(Dropout(0.5))
noisy_model.add(Dense(32, activation='relu'))
#noisy_model.add(Dropout(0.5))
noisy_model.add(Dense(apdataY.shape[1]))
opt3 = optimizers.Adadelta()
noisy_model.compile(loss='mse', optimizer=opt3, metrics=['accuracy'])
#load previous model weights if they exist
if load_previous_weights:
dir_path = os.path.realpath(".")
fn = dir_path + "/"+weigths_filename
) -> "keras.models.Sequential":
"""Build a Keras model from a Model proto.
Args:
config: A Model proto instance.
vocabulary_size: The number of tokens in the vocabulary.
Returns:
A Sequential model instance.
"""
# Deferred importing of Keras so that we don't have to activate the
# TensorFlow backend every time we import this module.
import keras
dropout = (config.architecture.post_layer_dropout_micros or 0) / 1e6
model = keras.models.Sequential()
layer = {
model_pb2.NetworkArchitecture.LSTM: keras.layers.LSTM,
model_pb2.NetworkArchitecture.RNN: keras.layers.RNN,
model_pb2.NetworkArchitecture.GRU: keras.layers.GRU,
}[config.architecture.neuron_type]
# The input layer.
model.add(
keras.layers.Embedding(
vocabulary_size,
config.architecture.embedding_size,
batch_input_shape=(
config.training.batch_size,
config.training.sequence_length,
),
)
def gan_generator_model():
model = Sequential()
model.add(Dense(input_dim=200, units=256))
model.add(Activation('relu'))
model.add(Dense(28*28*1))
model.add(Activation('sigmoid'))
model.add(Reshape((28, 28, 1), input_shape=(28*28*1,)))
plot_model(model, show_shapes=True, to_file='keras-gan-generator_model.png')
return model
def compile_architecture(self):
'''
Implementation of VGG 16-layer net.
'''
print 'Compiling VGG Net...'
model = Sequential()
model.add(ZeroPadding2D((1,1), input_shape=self.input_shape))
model.add(Convolution2D(64, self.kernel_size, self.kernel_size, activation='relu',
input_shape=self.input_shape))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(64, self.kernel_size, self.kernel_size,
activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, self.kernel_size, self.kernel_size,
activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, self.kernel_size, self.kernel_size,
activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
num_predictions = 20
save_dir = os.path.join(os.getcwd(), 'saved_models')
steps_per_epoch = 25
model_name = '00001.h5'
# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same',
input_shape=x_train.shape[1:]))
model.add(LeakyReLU(alpha=0.1))
model.add(Conv2D(32, (3, 3)))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.0))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(LeakyReLU(alpha=0.1))
model.add(Conv2D(64, (3, 3)))
model.add(LeakyReLU(alpha=0.1))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.0))
model.add(Flatten())
def build_generator(self):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=(self.latent_dim,))
def build_actor(self):
actor = Sequential()
actor.add(Dense(24, input_dim=self.state_size, activation='relu',
kernel_initializer='he_uniform'))
actor.add(Dense(self.action_size, activation='softmax',
kernel_initializer='he_uniform'))
actor.summary()
return actor