Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
weights=None,
border_mode='valid',
subsample=(1, 1),
W_regularizer=l2(1e-6)))
cnn.add(Activation('relu'))
# cnn.add(pool2(pool_size=(2, 2), strides=None, border_mode='valid', dim_ordering='th'))
cnn.add(Flatten())
# cnn.add(Dense(input_dim= 100,
# output_dim= 100,
# init = 'normal',
# #activation = 'sigmoid',
# W_regularizer='l2'))
# cnn.add(Activation('sigmoid'))
cnn.add(Dense(input_dim=100,
output_dim=2,
init='normal',
# activation = 'sigmoid',
W_regularizer='l2'))
cnn.add(Activation('softmax'))
#opti = SGD(lr={{choice([0.1, 0.01, 0.05, 0.005, 0.001])}}, momentum=1e-8, decay=0.1, nesterov=True)
#cnn.compile(loss='categorical_crossentropy', optimizer=opti)
epochs = 300
result = cnn.fit(X_train, Y_train,
batch_size=128, # {{choice([64, 128])}}
nb_epoch=epochs,
show_accuracy=True,
verbose=2,
print("Test fraction correct (LR-Accuracy) = {:.6f}".format(
lr.score(X_test, y_test)))
return pred_y
elif (type == 'k1'):
# 2-class logistic regression in Keras
model = Sequential()
model.add(Dense(1, activation='sigmoid', input_dim=X_train.shape[1]))
model.compile(optimizer='rmsprop', loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, nb_epoch=nb_epoch,
validation_data=validation_data, verbose=verb)
return model
elif (type == 'k2'):
# logistic regression with L1 and L2 regularization
model = Sequential()
model.add(Dense(1, activation='sigmoid', W_regularizer=reg,
input_dim=X_train.shape[1]))
model.compile(optimizer='rmsprop', loss='binary_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, nb_epoch=nb_epoch,
validation_data=validation_data, verbose=verb)
return model
stage2_res1_t = fCreateMNet_Block(stage2_inp_t, 32, l2_reg=l2_reg)
stage2_res2_t = fCreateMNet_Block(stage2_res1_t, 48, forwarding=False)
stage3_inp_t = fCreateMaxPooling2D(stage2_res2_t, stride=(2, 2))
stage3_inp_t = concatenate([stage3_inp_t, l_w3_t], axis=1)
stage3_res1_t = fCreateMNet_Block(stage3_inp_t, 48, l2_reg=l2_reg)
stage3_res2_t = fCreateMNet_Block(stage3_res1_t, 64, forwarding=False, l2_reg=l2_reg)
stage4_inp_t = fCreateMaxPooling2D(stage3_res2_t, stride=(2, 2))
stage4_inp_t = concatenate([stage4_inp_t, l_w4_t], axis=1)
stage4_res1_t = fCreateMNet_Block(stage4_inp_t, 64, l2_reg=l2_reg)
stage4_res2_t = fCreateMNet_Block(stage4_res1_t, 128, forwarding=False, l2_reg=l2_reg)
after_flat_t = Flatten()(stage4_res2_t)
after_dense_t = Dense(units=2,
kernel_initializer='he_normal',
kernel_regularizer=l2(l2_reg))(after_flat_t)
output_t = Activation('softmax')(after_dense_t)
cnn = Model(inputs=[input_t], outputs=[output_t])
opti, loss = fGetOptimizerAndLoss(optimizer, learningRate=learningRate)
cnn.compile(optimizer=opti, loss=loss, metrics=['accuracy'])
sArchiSpecs = '3stages_l2{}'.format(l2_reg)
def prepareFeaturesModel(nb_classes,requiredLines):
print "Preparing architecture of feature model..."
f_model = Sequential()
f_model.add(Dense(512, input_shape=(167,requiredLines)))
f_model.add(Flatten())
f_model.add(Dense(nb_classes, W_regularizer=l2(0.1)))
f_model.add(Activation('linear'))
f_model.add(Activation('softmax'))
return f_model
recieve convereted tensor: raw_data, smooted_data, and downsampled_data
"""
# lower layer
lower_model = [self.build_network(self.model_config['critic_lower'], input_shape=(self.history_length, self.n_stock, 1))
for _ in range(1 + self.n_smooth + self.n_down)]
merged = Merge(lower_model, mode='concat')
# upper layer
upper_model = self.build_network(self.model_config['critic_upper'], model=merged)
# action layer
action = self.build_network(self.model_config['critic_action'], input_shape=(self.n_stock,), is_conv=False)
# output layer
merged = Merge([upper_model, action], mode='mul')
model = Sequential()
model.add(merged)
model.add(Dense(1))
return model
# TODO
# Reshape -> conv -> reshap
# model.add(TimeDistributed(Convolution1D(nb_filter, filter_length)))
print("Adding Masking Layer...")
model.add(Masking(mask_value=0.0))
print("Adding First LSTM Layer...")
model.add(LSTM(fc_size, return_sequences=True))
print("Adding Second LSTM Layer...")
model.add(LSTM(fc_size, return_sequences=False))
print("Adding Final Dense Layer...")
model.add(Dense(dict_size))
print("Adding Softmax Layer...")
model.add(Activation('softmax'))
print("Compiling the model to runnable code, which will take a long time...")
if optimizer == 'sgd':
optimizer = SGD(lr=lr, momentum=momentum, decay=decay, nesterov=nesterov)
elif optimizer == 'rmsprop':
optimizer = RMSprop(lr=lr, rho=rho, epsilon=epsilon)
elif optimizer == 'adagrad':
optimizer = Adagrad(lr=lr, epsilon=epsilon)
## Takes my macbook pro 1-2min to finish.
model.compile(loss='categorical_crossentropy', optimizer=optimizer)
end_time = time.time()
# output: 64 cubes of side length 5-3+1 = 3
model.add(Convolution3D(nb_filter=nb_filter_out, stack_size=nb_filter_in,
nb_row=filter_size, nb_col=filter_size,
nb_depth=filter_size, border_mode='valid', activation='relu', init='he_normal'))
# During training: drop (set to zero) each of the current outputs with a 0.5
# probability.
# During testing: multiply each of the current outputs by that probability.
model.add(Dropout(.5))
dim = 3
# output: a vector of size 64*3*3*3 = 1728
model.add(Flatten())
# output: a vector of size 3000
model.add(Dense(nb_filter_out * dim * dim * dim, 3000, activation='relu', init='he_normal'))
# output: a vector of size 4000
model.add(Dense(3000, 4000, activation='relu', init='he_normal'))
# output: a vector of size PATCH_SIZE*PATCH_SIZE*PATCH_SIZE
model.add(Dense(4000, PATCH_SIZE * PATCH_SIZE * PATCH_SIZE, init='glorot_normal',
activation='sigmoid'))
optimizer = RMSprop()
model.compile(loss='cross_entropy_error', optimizer=optimizer)
return model
x = conv2d( x, 256 )
# 8x8
x = conv2d( x, 512 )
# 4x4
if build_disc:
x = Flatten()(x)
# add 16 features. Run 1D conv of size 3.
#x = MinibatchDiscrimination(16, 3)( x )
#x = Dense(1024, kernel_initializer=Args.kernel_initializer)( x )
#x = LeakyReLU(alpha=Args.alpha_D)( x )
# 1 when "real", 0 when "fake".
x = Dense(1, activation='sigmoid',
kernel_initializer=Args.kernel_initializer)( x )
return models.Model( inputs=face, outputs=x )
else:
# build encoder.
x = Conv2D(Args.noise_shape[2], (4, 4), activation='tanh')(x)
return models.Model( inputs=face, outputs=x )
from keras.layers.core import Dense, Activation
from keras.regularizers import l2
from keras.optimizers import SGD
# Setup the model here
num_input_nodes = 4
num_output_nodes = 2
num_hidden_layers = 1
nodes_hidden_layer = 64
l2_val = 1e-5
model = Sequential()
# Hidden layer 1
# NOTE: Number of input nodes need to be defined in this layer
model.add(Dense(nodes_hidden_layer, activation='relu', W_regularizer=l2(l2_val), input_dim=num_input_nodes))
# Hidden layer 2 to num_hidden_layers
# NOTE: Here, you can do what you want
for k in range(num_hidden_layers-1):
model.add(Dense(nodes_hidden_layer, activation='relu', W_regularizer=l2(l2_val)))
# Ouput layer
# NOTE: Use following output types for the different tasks
# Binary classification: 2 output nodes with 'softmax' activation
# Regression: 1 output with any activation ('linear' recommended)
# Multiclass classification: (number of classes) output nodes with 'softmax' activation
model.add(Dense(num_output_nodes, activation='softmax'))
# Compile model
# NOTE: Use following settings for the different tasks
# Any classification: 'categorical_crossentropy' is recommended loss function
N = N[1:] # remove the first block from block definition list
filters_list = filters_list[1:] # remove the first filter from the filter list
# block 2 to N
for block_idx, n_i in enumerate(N):
for i in range(n_i):
if i == 0:
x = __bottleneck_block(x, filters_list[block_idx], cardinality, strides=2,
weight_decay=weight_decay)
else:
x = __bottleneck_block(x, filters_list[block_idx], cardinality, strides=1,
weight_decay=weight_decay)
if include_top:
x = GlobalAveragePooling2D()(x)
x = Dense(nb_classes, use_bias=False, kernel_regularizer=l2(weight_decay),
kernel_initializer='he_normal', activation='softmax')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D()(x)
elif pooling == 'max':
x = GlobalMaxPooling2D()(x)
return x