Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
pls_input = Input(shape=(input_dim,), name="pls_input")
noise_input = Input(shape=(input_dim,), name="noise_input")
vuv_input = Input((1,), name="vuv_input")
pls = Reshape((input_dim, 1))(pls_input)
noise = Reshape((input_dim, 1))(noise_input)
vuv = Reshape((1,1))(vuv_input)
vuv = UpSampling1D(size=input_dim)(vuv) # is this needed or is broadcasting automatic?
x = concatenate([pls, noise], axis=2) # concat as different channels
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = concatenate([pls, x], axis=2) # concat as different channels
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
strides=1)(x)
x = BatchNormalization()(x)
x = LeakyReLU(0.1)(x)
x = concatenate([pls, x], axis=2) # concat as different channels
x = Convolution1D(filters=100,
kernel_size=15,
padding='same',
x = BatchNormalization(epsilon=eps, axis=bn_axis,
name=bn_name_base + '2a')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2a')(x)
x = Activation('relu', name=conv_name_base + '2a_relu')(x)
x = ZeroPadding2D((1, 1), name=conv_name_base + '2b_zeropadding')(x)
x = Conv2D(nb_filter2, (kernel_size, kernel_size),
name=conv_name_base + '2b', use_bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=bn_axis,
name=bn_name_base + '2b')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2b')(x)
x = Activation('relu', name=conv_name_base + '2b_relu')(x)
x = Conv2D(nb_filter3, (1, 1),
name=conv_name_base + '2c', use_bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=bn_axis,
name=bn_name_base + '2c')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2c')(x)
shortcut = Conv2D(nb_filter3, (1, 1), strides=strides,
name=conv_name_base + '1', use_bias=False)(input_tensor)
shortcut = BatchNormalization(epsilon=eps, axis=bn_axis,
name=bn_name_base + '1')(shortcut)
shortcut = Scale(axis=bn_axis, name=scale_name_base + '1')(shortcut)
x = add([x, shortcut], name='res' + str(stage) + block)
x = Activation('relu', name='res' + str(stage) + block + '_relu')(x)
return x
def BatchNorm(mode=2, axis=1, **kwargs):
"""Convenience method for BatchNormalization layers."""
if KERAS_2:
return BatchNormalization(axis=axis, **kwargs)
else:
return BatchNormalization(mode=2,axis=axis, **kwargs)
block: str like 'a','b'.., curretn block
kernel_size: defualt 3, the kernel size of middle conv layer at main path
"""
nb_filter1, nb_filter2, nb_filter3 = nb_filter
out = Convolution2D(nb_filter1, 1, 1, name='res'+str(stage)+block+'_branch2a')(input_tensor)
out = BatchNormalization(axis=1, name='bn'+str(stage)+block+'_branch2a')(out)
out = Activation('relu')(out)
out = out = Convolution2D(nb_filter2, kernel_size, kernel_size, border_mode='same',
name='res'+str(stage)+block+'_branch2b')(out)
out = BatchNormalization(axis=1, name='bn'+str(stage)+block+'_branch2b')(out)
out = Activation('relu')(out)
out = Convolution2D(nb_filter3, 1, 1, name='res'+str(stage)+block+'_branch2c')(out)
out = BatchNormalization(axis=1, name='bn'+str(stage)+block+'_branch2c')(out)
out = merge([out, input_tensor], mode='sum')
out = Activation('relu')(out)
return out
ac4 = Activation('relu')(bn7)
conv9 = Conv3D(256, (3, 3, 3), padding="same", kernel_initializer="normal")(ac4)
bn8 = BatchNormalization()(conv9)
pad5 = Conv3D(256, (1, 1, 1), padding="same", kernel_initializer="normal")(sumb4_1)
BN5 = BatchNormalization()(pad5)
sumb5 = add([BN5, bn8])
res4 = Activation('relu')(sumb5)
up1 = UpSampling3D(size=(2, 2, 1))(res4)
pad6 = Conv3D(256, (1, 1, 1), padding="same", kernel_initializer="normal")(res1)
BN6 = BatchNormalization()(pad6)
sumb6 = add([BN6, up1])
# resudial block
conv10 = Conv3D(128, (3, 3, 3), padding="same", kernel_initializer="normal")(sumb6)
bn9 = BatchNormalization()(conv10)
ac5 = Activation('relu')(bn9)
conv11 = Conv3D(128, (3, 3, 3), padding="same", kernel_initializer="normal")(ac5)
bn10 = BatchNormalization()(conv11)
pad7 = Conv3D(128, (1, 1, 1), padding="same", kernel_initializer="normal")(sumb6)
BN7 = BatchNormalization()(pad7)
sumb7 = add([BN7, bn10])
res5 = Activation('relu')(sumb7)
up2 = UpSampling3D(size=(2, 2, 1))(res5)
pad8 = Conv3D(128, (1, 1, 1), padding="same", kernel_initializer="normal")(ac0)
BN8 = BatchNormalization()(pad8)
sumb8 = add([BN8, up2])
# resudial block
conv12 = Conv3D(64, (3, 3, 3), padding="same", kernel_initializer="normal")(sumb8)
bn11= BatchNormalization()(conv12)
merge10=concatenate([up7,conv7a,conv7b,conv7c,conv7d,conv7e,conv7f,conv7g,conv7h,conv7i,conv7j,conv7k])
conv7l=Conv2D(12, (kernel_size, kernel_size), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(l2_lambda) )(merge10)
conv7l = bn()(conv7l)
merge11=concatenate([up7,conv7a,conv7b,conv7c,conv7d,conv7e,conv7f,conv7g,conv7h,conv7i,conv7j,conv7k,conv7l])
conv7m=Conv2D(12, (kernel_size, kernel_size), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(l2_lambda) )(merge11)
conv7m = bn()(conv7m)
merge12=concatenate([up7,conv7a,conv7b,conv7c,conv7d,conv7e,conv7f,conv7g,conv7h,conv7i,conv7j,conv7k,conv7l,conv7m])
conv7n=Conv2D(12, (kernel_size, kernel_size), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(l2_lambda) )(merge12)
conv7n = bn()(conv7n)
merge13=concatenate([up7,conv7a,conv7b,conv7c,conv7d,conv7e,conv7f,conv7g,conv7h,conv7i,conv7j,conv7k,conv7l,conv7m,conv7n])
conv7o=Conv2D(12, (kernel_size, kernel_size), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(l2_lambda) )(merge13)
conv7o = bn()(conv7o)
merge14=concatenate([up7,conv7a,conv7b,conv7c,conv7d,conv7e,conv7f,conv7g,conv7h,conv7i,conv7j,conv7k,conv7l,conv7m,conv7n,conv7o])
conv7p=Conv2D(12, (kernel_size, kernel_size), activation='relu', padding='same',
kernel_regularizer=regularizers.l2(l2_lambda) )(merge14)
conv7p = bn()(conv7p)
def conv2d_bn(x, nb_filter, nb_row, nb_col,
border_mode='same', subsample=(1, 1), bias=False):
"""
Utility function to apply conv + BN.
(Slightly modified from https://github.com/fchollet/keras/blob/master/keras/applications/inception_v3.py)
"""
channel_axis = -1
x = Convolution2D(nb_filter, (nb_row, nb_col),
strides=subsample,
padding=border_mode,
use_bias=bias)(x)
x = BatchNormalization(axis=channel_axis)(x)
x = Activation('relu')(x)
return x
def bn_relu(x):
x = BatchNormalization(momentum=0.9, epsilon=1e-5)(x)
x = Activation('relu')(x)
return x
conv2_2 = Convolution2D(128, 3, 3, border_mode='same', activation='relu')(conv2_1)
bn2 = BatchNormalization(mode=0, axis=1)(conv2_2)
pool2 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn2)
drop2 = Dropout(0.5)(pool2)
# 3 conv
conv3_1 = Convolution2D(256, 3, 3, border_mode='same', activation='relu')(drop2)
conv3_2 = Convolution2D(256, 3, 3, border_mode='same', activation='relu')(conv3_1)
conv3_3 = Convolution2D(256, 3, 3, border_mode='same', activation='relu')(conv3_2)
bn3 = BatchNormalization(mode=0, axis=1)(conv3_3)
pool3 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn3)
drop3 = Dropout(0.5)(pool3)
# 4 conv
conv4_1 = Convolution2D(512, 3, 3, border_mode='same', activation='relu')(drop3)
conv4_2 = Convolution2D(512, 3, 3, border_mode='same', activation='relu')(conv4_1)
conv4_3 = Convolution2D(512, 3, 3, border_mode='same', activation='relu')(conv4_2)
bn4 = BatchNormalization(mode=0, axis=1)(conv4_3)
pool4 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn4)
drop4 = Dropout(0.5)(pool4)
# 5 conv
conv5_1 = Convolution2D(512, 3, 3, border_mode='same', activation='relu')(drop4)
conv5_2 = Convolution2D(512, 3, 3, border_mode='same', activation='relu')(conv5_1)
conv5_3 = Convolution2D(512, 3, 3, border_mode='same', activation='relu')(conv5_2)
bn5 = BatchNormalization(mode=0, axis=1)(conv5_3)
pool5 = MaxPooling2D(pool_size=(2,2), strides=(2,2))(bn5)
drop5 = Dropout(0.5)(pool5)
# flaten
flat = Flatten()(drop5)
# 1 dense
dense1 = Dense(4096, activation='relu')(flat)
bn6 = BatchNormalization(mode=0, axis=1)(dense1)
drop6 = Dropout(0.5)(bn6)
# 2 dense
def m5(num_classes=10):
print('Using Model M5')
m = Sequential()
m.add(Conv1D(128,
input_shape=[AUDIO_LENGTH, 1],
kernel_size=80,
strides=4,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(128,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(l=0.0001)))
m.add(BatchNormalization())
m.add(Activation('relu'))
m.add(MaxPooling1D(pool_size=4, strides=None))
m.add(Conv1D(256,
kernel_size=3,
strides=1,
padding='same',
kernel_initializer='glorot_uniform',