How to use holoviews - 10 common examples

To help you get started, we’ve selected a few holoviews examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github DeniseCaiLab / minian / minian / visualization.py View on Github external
def _temp_comp_sub(self, usub=None):
        if usub is None:
            usub = self.strm_usub.usub
        if self._normalize:
            C, S = self.C_norm_sub, self.S_norm_sub
        else:
            C, S = self.C_sub, self.S_sub
        cur_temp = dict()
        if self._showC:
            cur_temp['C'] = (
                hv.Dataset(C.sel(unit_id=usub)
                           .compute().rename("Intensity (A. U.)")
                           .dropna('frame', how='all')).to(hv.Curve, 'frame'))
        if self._showS:
            cur_temp['S'] = (
                hv.Dataset(S.sel(unit_id=usub)
                           .compute().rename("Intensity (A. U.)")
                           .dropna('frame', how='all')).to(hv.Curve, 'frame'))
        cur_vl = (hv.DynamicMap(
            lambda f, y: hv.VLine(f) if f else hv.VLine(0),
            streams=[self.strm_f])
                  .opts(style=dict(color='red')))
        cur_cv = hv.Curve([], kdims=['frame'], vdims=['Internsity (A.U.)'])
        self.strm_f.source = cur_cv
        h_cv = len(self._w) // 8
        w_cv = len(self._w) * 2
        temp_comp = (cur_cv
                     * datashade_ndcurve(hv.HoloMap(cur_temp, 'trace')
                                         .collate().overlay('trace')
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_ndloc_index(self):
        xs, ys = np.linspace(0.12, 0.81, 10), np.linspace(0.12, 0.391, 5)
        arr = np.arange(10)*np.arange(5)[np.newaxis].T
        ds = Dataset((xs, ys, arr), kdims=['x', 'y'], vdims=['z'], datatype=[self.datatype])
        self.assertEqual(ds.ndloc[0,0], arr[0, 0])
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_groupby_drop_dims_with_vdim(self):
        array = np.random.rand(3, 20, 10)
        ds = Dataset({'x': range(10), 'y': range(20), 'z': range(3), 'Val': array, 'Val2': array*2},
                     kdims=['x', 'y', 'z'], vdims=['Val', 'Val2'])
        with DatatypeContext([self.datatype, 'dictionary' , 'dataframe'], (ds, Dataset)):
            partial = ds.to(Dataset, kdims=['Val'], vdims=['Val2'], groupby='y')
        self.assertEqual(partial.last['Val'], array[:, -1, :].T.flatten())
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_ndloc_lists(self):
        xs, ys = np.linspace(0.12, 0.81, 10), np.linspace(0.12, 0.391, 5)
        arr = np.arange(10)*np.arange(5)[np.newaxis].T
        ds = Dataset((xs, ys, arr), kdims=['x', 'y'], vdims=['z'], datatype=[self.datatype, 'dictionary'])
        sliced = Dataset((xs[[1, 2, 3]], ys[[0, 1, 2]], arr[[0, 1, 2], [1, 2, 3]]), kdims=['x', 'y'], vdims=['z'],
                         datatype=['dictionary'])
        self.assertEqual(ds.ndloc[[0, 1, 2], [1, 2, 3]], sliced)
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_extract_all_kdims_with_vdims_defined(self):
        df = pd.DataFrame({'x': [1, 2, 3], 'y': [1, 2, 3], 'z': [1, 2, 3]},
                          columns=['x', 'y', 'z'])
        ds = Dataset(df, vdims=['x'])
        self.assertEqual(ds.kdims, [Dimension('y'), Dimension('z')])
        self.assertEqual(ds.vdims, [Dimension('x')])
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_aggregate_ht(self):
        aggregated = Dataset({'Gender':['M', 'F'], 'Weight':[16.5, 10], 'Height':[0.7, 0.8]},
                             kdims=self.kdims[:1], vdims=self.vdims)
        self.compare_dataset(self.table.aggregate(['Gender'], np.mean), aggregated)
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_dynamic_groupby_with_transposed_dimensions(self):
        dat = np.zeros((3,5,7))
        dataset = Dataset((range(7), range(5), range(3), dat), ['z','x','y'], 'value')
        grouped = dataset.groupby('z', kdims=['y', 'x'], dynamic=True)
        self.assertEqual(grouped[2].dimension_values(2, flat=False), dat[:, :, -1].T)
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_scalar_groupby(self):
        ds = Dataset({'A': 1, 'B': np.arange(10)}, kdims=['A', 'B'])
        groups = ds.groupby('A')
        self.assertEqual(groups, HoloMap({1: Dataset({'B': np.arange(10)}, 'B')}, 'A'))
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def test_dataset_ndloc_lists_invert_xy(self):
        xs, ys = np.linspace(0.12, 0.81, 10), np.linspace(0.12, 0.391, 5)
        arr = np.arange(10)*np.arange(5)[np.newaxis].T
        ds = Dataset((xs[::-1], ys[::-1], arr), kdims=['x', 'y'], vdims=['z'], datatype=[self.datatype, 'dictionary'])
        sliced = Dataset((xs[::-1][[8, 7, 6]], ys[::-1][[4, 3, 2]], arr[[4, 3, 2], [8, 7, 6]]), kdims=['x', 'y'], vdims=['z'],
                         datatype=['dictionary'])
        self.assertEqual(ds.ndloc[[0, 1, 2], [1, 2, 3]], sliced)
github holoviz / holoviews / tests / core / data / testdataset.py View on Github external
def init_column_data(self):
        import dask.array
        self.xs = np.array(range(11))
        self.xs_2 = self.xs**2

        self.y_ints = self.xs*2
        dask_y = dask.array.from_array(np.array(self.y_ints), 2)
        self.dataset_hm = Dataset((self.xs, dask_y),
                                  kdims=['x'], vdims=['y'])
        self.dataset_hm_alias = Dataset((self.xs, dask_y),
                                        kdims=[('x', 'X')], vdims=[('y', 'Y')])