Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __lshift__(self, other): return dim(self, operator.lshift, other)
def __mod__(self, other): return dim(self, operator.mod, other)
def _apply_transforms(self, element, ranges, style):
new_style = dict(style)
for k, v in dict(style).items():
if isinstance(v, util.basestring):
if k == 'marker' and v in 'xsdo':
continue
elif v in element:
v = dim(v)
elif any(d==v for d in self.overlay_dims):
v = dim([d for d in self.overlay_dims if d==v][0])
if not isinstance(v, dim):
continue
elif (not v.applies(element) and v.dimension not in self.overlay_dims):
new_style.pop(k)
self.warning('Specified %s dim transform %r could not be applied, as not all '
'dimensions could be resolved.' % (k, v))
continue
if len(v.ops) == 0 and v.dimension in self.overlay_dims:
val = self.overlay_dims[v.dimension]
else:
val = v.apply(element, ranges=ranges, flat=True)
def cumprod(self, *args, **kwargs): return dim(self, np.cumprod, *args, **kwargs)
def cumsum(self, *args, **kwargs): return dim(self, np.cumsum, *args, **kwargs)
def log(self, *args, **kwargs): return dim(self, np.log, *args, **kwargs)
def log10(self, *args, **kwargs): return dim(self, np.log10, *args, **kwargs)
def digitize(self, *args, **kwargs): return dim(self, digitize, *args, **kwargs)
def isin(self, *args, **kwargs): return dim(self, isin, *args, **kwargs)
def __rtruediv__(self, other): return dim(self, operator.truediv, other, reverse=True)
def __rpow__(self, other): return dim(self, operator.pow, other, reverse=True)
def __rrshift__(self, other): return dim(self, operator.rrshift, other)
def _apply_transforms(self, element, data, ranges, style, group=None):
new_style = dict(style)
prefix = group+'_' if group else ''
for k, v in dict(style).items():
if isinstance(v, util.basestring):
if validate(k, v) == True:
continue
elif v in element or (isinstance(element, Graph) and v in element.nodes):
v = dim(v)
elif any(d==v for d in self.overlay_dims):
v = dim([d for d in self.overlay_dims if d==v][0])
if (not isinstance(v, dim) or (group is not None and not k.startswith(group))):
continue
elif (not v.applies(element) and v.dimension not in self.overlay_dims):
new_style.pop(k)
self.param.warning(
'Specified %s dim transform %r could not be applied, '
'as not all dimensions could be resolved.' % (k, v))
continue
if v.dimension in self.overlay_dims:
ds = Dataset({d.name: v for d, v in self.overlay_dims.items()},
list(self.overlay_dims))
val = v.apply(ds, ranges=ranges, flat=True)[0]
elif isinstance(element, Path) and not isinstance(element, Contours):
val = np.concatenate([v.apply(el, ranges=ranges, flat=True)[:-1]
def __radd__(self, other): return dim(self, operator.add, other, reverse=True)
def __rand__(self, other): return dim(self, operator.and_, other)