How to use the holoviews.HoloMap function in holoviews

To help you get started, we’ve selected a few holoviews examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github holoviz / holoviews / tests / testrenderclass.py View on Github external
def setUp(self):
        if pyplot is None:
            raise SkipTest("Matplotlib required to test widgets")

        self.basename = 'no-file'
        self.image1 = Image(np.array([[0,1],[2,3]]), label='Image1')
        self.image2 = Image(np.array([[1,0],[4,-2]]), label='Image2')
        self.map1 = HoloMap({1:self.image1, 2:self.image2}, label='TestMap')

        self.unicode_table = ItemTable([('β','Δ1'), ('°C', '3×4')],
                                       label='Poincaré', group='α Festkörperphysik')

        self.renderer = Store.renderer.instance()
github holoviz / holoviews / tests / core / data / base.py View on Github external
def test_dataset_groupby(self):
        group1 = {'Age':[10,16], 'Weight':[15,18], 'Height':[0.8,0.6]}
        group2 = {'Age':[12], 'Weight':[10], 'Height':[0.8]}
        grouped = HoloMap([('M', Dataset(group1, kdims=['Age'], vdims=self.vdims)),
                           ('F', Dataset(group2, kdims=['Age'], vdims=self.vdims))],
                          kdims=['Gender'], sort=False)
        print(grouped.keys())
        self.assertEqual(self.table.groupby(['Gender']), grouped)
github holoviz / holoviews / tests / core / data / base.py View on Github external
def test_dataset_groupby_second_dim(self):
        group1 = {'Gender':['M'], 'Weight':[15], 'Height':[0.8]}
        group2 = {'Gender':['M'], 'Weight':[18], 'Height':[0.6]}
        group3 = {'Gender':['F'], 'Weight':[10], 'Height':[0.8]}
        grouped = HoloMap([(10, Dataset(group1, kdims=['Gender'], vdims=self.vdims)),
                           (16, Dataset(group2, kdims=['Gender'], vdims=self.vdims)),
                           (12, Dataset(group3, kdims=['Gender'], vdims=self.vdims))],
                          kdims=['Age'], sort=False)
        self.assertEqual(self.table.groupby(['Age']), grouped)
github holoviz / holoviews / tests / testplotinstantiation.py View on Github external
def test_overlay_update_visible(self):
        hmap = HoloMap({i: Curve(np.arange(i), label='A') for i in range(1, 3)})
        hmap2 = HoloMap({i: Curve(np.arange(i), label='B') for i in range(3, 5)})
        plot = bokeh_renderer.get_plot(hmap*hmap2)
        subplot1, subplot2 = plot.subplots.values()
        self.assertTrue(subplot1.handles['glyph_renderer'].visible)
        self.assertFalse(subplot2.handles['glyph_renderer'].visible)
        plot.update((4,))
        self.assertFalse(subplot1.handles['glyph_renderer'].visible)
        self.assertTrue(subplot2.handles['glyph_renderer'].visible)
github holoviz / holoviews / tests / plotting / matplotlib / testrenderer.py View on Github external
def setUp(self):
        if 'matplotlib' not in Store.renderers:
            raise SkipTest("Matplotlib required to test widgets")

        self.basename = 'no-file'
        self.image1 = Image(np.array([[0,1],[2,3]]), label='Image1')
        self.image2 = Image(np.array([[1,0],[4,-2]]), label='Image2')
        self.map1 = HoloMap({1:self.image1, 2:self.image2}, label='TestMap')

        self.unicode_table = ItemTable([('β','Δ1'), ('°C', '3×4')],
                                       label='Poincaré', group='α Festkörperphysik')

        self.renderer = MPLRenderer.instance()
github holoviz / holoviews / tests / core / testtraversal.py View on Github external
def test_unique_keys_no_overlap_exception(self):
        hmap1 = HoloMap({i: Curve(range(10)) for i in range(5)}, kdims=['A'])
        hmap2 = HoloMap({i: Curve(range(10)) for i in range(3, 10)})
        exception = ('When combining HoloMaps into a composite plot '
                     'their dimensions must be subsets of each other.')
        with self.assertRaisesRegexp(Exception, exception):
            dims, keys = unique_dimkeys(hmap1+hmap2)
github jhu-lcsr / costar_plan / ctp_integration / scripts / stack_player.py View on Github external
def generate_holo_map(rgb_images, height, width):
    frame_map = {}
    for i, image in enumerate(rgb_images):

        # print('image type: ' + str(type(image)))
        hv_rgb = hv.RGB(np.array(image))
        shape = image.shape
        frame_map[i] = hv_rgb
    holomap = hv.HoloMap(frame_map)
    holomap = holomap.options(width=int(width), height=int(height))
    return holomap
github DeniseCaiLab / minian / minian / visualization.py View on Github external
cents_df = centroid(A)
        hv_pts_dict[key] = (hv.Points(cents_df,
                                      kdims=['width', 'height'],
                                      vdims=['unit_id'])
                            .opts(plot=dict(tools=['hover']),
                                  style=dict(fill_alpha=0.2,
                                             line_alpha=0, size=8)))
        hv_A_dict[key] = hv.Image(A.sum('unit_id').rename('A'),
                                  kdims=['width', 'height'])
        hv_Ab_dict[key] = hv.Image((A > 0).sum('unit_id').rename('A_bin'),
                                   kdims=['width', 'height'])
        hv_C_dict[key] = hv.Dataset(C.rename('C')).to(hv.Curve, kdims='frame')
    hv_pts = hv.HoloMap(hv_pts_dict, kdims=kdims)
    hv_A = hv.HoloMap(hv_A_dict, kdims=kdims)
    hv_Ab = hv.HoloMap(hv_Ab_dict, kdims=kdims)
    hv_C = (hv.HoloMap(hv_C_dict, kdims=kdims).collate()
            .grid('unit_id').add_dimension('time', 0, 0))
    if datashading:
        hv_A = regrid(hv_A)
        hv_Ab = regrid(hv_Ab)
        hv_C = datashade(hv_C)
    hv_A = hv_A.opts(frame_width=400, aspect=w/h,
                     colorbar=True, cmap='viridis')
    hv_Ab = hv_Ab.opts(frame_width=400, aspect=w/h,
                       colorbar=True, cmap='viridis')
    hv_C = hv_C.map(
        lambda cr: cr.opts(frame_width=500, frame_height=50),
        hv.RGB if datashading else hv.Curve)
    return (hv.NdLayout({
        'pseudo-color': (hv_pts * hv_A),
        'binary': (hv_pts * hv_Ab)}, kdims='Spatial Matrix').cols(1)
            + hv_C.relabel('Temporal Components'))