How to use the gluoncv.utils.makedirs function in gluoncv

To help you get started, we’ve selected a few gluoncv examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github mnikitin / EfficientNet / train_imagenet / train.py View on Github external
if opt.use_rec:
        train_data, val_data, batch_fn = get_data_rec(opt.rec_train, opt.rec_train_idx,
                                                    opt.rec_val, opt.rec_val_idx,
                                                    batch_size, num_workers)
    else:
        train_data, val_data, batch_fn = get_data_loader(opt.data_dir, batch_size, num_workers)

    train_metric = mx.metric.Accuracy()
    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)

    save_frequency = opt.save_frequency
    if opt.save_dir and save_frequency:
        save_dir = opt.save_dir
        makedirs(save_dir)
    else:
        save_dir = ''
        save_frequency = 0

    def test(ctx, val_data):
        if opt.use_rec:
            val_data.reset()
        acc_top1.reset()
        acc_top5.reset()
        for i, batch in enumerate(val_data):
            data, label = batch_fn(batch, ctx)
            outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
            acc_top1.update(label, outputs)
            acc_top5.update(label, outputs)

        _, top1 = acc_top1.get()
github awslabs / autogluon / examples / image_classification / benchmark.py View on Github external
from autogluon import config_choice
from gluoncv.utils import makedirs

def parse_args():
    parser = argparse.ArgumentParser(description='Train a model for different kaggle competitions.')
    parser.add_argument('--data-dir', type=str, default='/home/ubuntu/workspace/data/dataset/',
                        help='training and validation pictures to use.')
    parser.add_argument('--dataset', type=str, default='dogs-vs-cats-redux-kernels-edition',
                        help='the kaggle competition')
    opt = parser.parse_args()
    return opt
opt = parse_args()

# data
local_path = os.path.dirname(__file__)
makedirs(opt.dataset)
logging_file = os.path.join(opt.dataset ,'summary.log')
filehandler = logging.FileHandler(logging_file)
streamhandler = logging.StreamHandler()
logger = logging.getLogger('')
logger.setLevel(logging.INFO)
logger.addHandler(filehandler)
logger.addHandler(streamhandler)
logging.info(opt.dataset)

target = config_choice(opt.dataset, opt.data_dir)
load_dataset = task.Dataset(target['dataset'])

classifier = task.fit(dataset = task.Dataset(target['dataset']),
                      net = target['net'],
                      optimizer = target['optimizer'],
                      epochs = target['epochs'],
github aws-samples / deep-learning-models / legacy / models / resnet / mxnet / train_imagenet.py View on Github external
if opt.use_rec:
    train_data, val_data, batch_fn = get_data_rec(opt.rec_train, opt.rec_train_idx,
                                                  opt.rec_val, opt.rec_val_idx,
                                                  batch_size, num_workers)
else:
    train_data, val_data, batch_fn = get_data_loader(opt.data_dir, batch_size, num_workers)

acc_top1 = mx.metric.Accuracy()
acc_top5 = mx.metric.TopKAccuracy(5)

initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in", magnitude=2)

save_frequency = opt.save_frequency
if opt.save_dir and save_frequency:
    save_dir = opt.save_dir
    makedirs(save_dir)
else:
    save_dir = ''
    save_frequency = 0

def test(ctx, val_data):
    if opt.use_rec:
        val_data.reset()
    acc_top1.reset()
    acc_top5.reset()
    for i, batch in enumerate(val_data):
        data, label = batch_fn(batch, ctx)
        outputs = [net(X.astype(opt.dtype, copy=False)) for X in data]
        acc_top1.update(label, outputs)
        acc_top5.update(label, outputs)

    _, top1 = acc_top1.get()
github dmlc / gluon-cv / scripts / datasets / mscoco.py View on Github external
def download_coco(path, overwrite=False):
    _DOWNLOAD_URLS = [
        ('http://images.cocodataset.org/zips/train2017.zip',
         '10ad623668ab00c62c096f0ed636d6aff41faca5'),
        ('http://images.cocodataset.org/annotations/annotations_trainval2017.zip',
         '8551ee4bb5860311e79dace7e79cb91e432e78b3'),
        ('http://images.cocodataset.org/zips/val2017.zip',
         '4950dc9d00dbe1c933ee0170f5797584351d2a41'),
        # ('http://images.cocodataset.org/annotations/stuff_annotations_trainval2017.zip',
         # '46cdcf715b6b4f67e980b529534e79c2edffe084'),
        # test2017.zip, for those who want to attend the competition.
        # ('http://images.cocodataset.org/zips/test2017.zip',
        #  '4e443f8a2eca6b1dac8a6c57641b67dd40621a49'),
    ]
    makedirs(path)
    for url, checksum in _DOWNLOAD_URLS:
        filename = download(url, path=path, overwrite=overwrite, sha1_hash=checksum)
        # extract
        with zipfile.ZipFile(filename) as zf:
            zf.extractall(path=path)
github researchmm / DBTNet / code / ft_cub_dbt.py View on Github external
opt.rec_val, opt.rec_val_idx,
                                                  batch_size, num_workers)
else:
    train_data, val_data, batch_fn = get_data_loader(opt.data_dir, batch_size, num_workers)

if opt.mixup:
    train_metric = mx.metric.RMSE()
else:
    train_metric = mx.metric.Accuracy()
acc_top1 = mx.metric.Accuracy()
acc_top5 = mx.metric.TopKAccuracy(5)

save_frequency = opt.save_frequency
if opt.save_dir and save_frequency:
    save_dir = opt.save_dir
    makedirs(save_dir)
else:
    save_dir = ''
    save_frequency = 0

def mixup_transform(label, classes, lam=1, eta=0.0):
    if isinstance(label, nd.NDArray):
        label = [label]
    res = []
    for l in label:
        y1 = l.one_hot(classes, on_value = 1 - eta + eta/classes, off_value = eta/classes)
        y2 = l[::-1].one_hot(classes, on_value = 1 - eta + eta/classes, off_value = eta/classes)
        res.append(lam*y1 + (1-lam)*y2)
    return res

def smooth(label, classes, eta=0.1):
    if isinstance(label, nd.NDArray):
github dmlc / gluon-cv / scripts / pose / simple_pose / train_simple_pose.py View on Github external
iters_per_epoch=num_batches,
                step_epoch=lr_decay_epoch,
                step_factor=lr_decay, power=2)
])

# optimizer = 'sgd'
# optimizer_params = {'wd': opt.wd, 'momentum': 0.9, 'lr_scheduler': lr_scheduler}
optimizer = 'adam'
optimizer_params = {'wd': opt.wd, 'lr_scheduler': lr_scheduler}
if opt.dtype != 'float32':
    optimizer_params['multi_precision'] = True

save_frequency = opt.save_frequency
if opt.save_dir and save_frequency:
    save_dir = opt.save_dir
    makedirs(save_dir)
else:
    save_dir = ''
    save_frequency = 0

def train(ctx):
    if isinstance(ctx, mx.Context):
        ctx = [ctx]
    if opt.use_pretrained_base:
        if model_name.startswith('simple'):
            net.deconv_layers.initialize(ctx=ctx)
            net.final_layer.initialize(ctx=ctx)
        elif model_name.startswith('mobile'):
            net.upsampling.initialize(ctx=ctx)
    else:
        net.initialize(mx.init.MSRAPrelu(), ctx=ctx)
github richardwth / MMD-GAN / Addon / ImageNet / imagenet.py View on Github external
def build_rec_process(img_dir, train=False, num_thread=1):

    from gluoncv.utils import download, makedirs

    rec_dir = os.path.abspath(os.path.join(img_dir, '../rec'))
    makedirs(rec_dir)
    prefix = 'train' if train else 'val'
    print('Building ImageRecord file for ' + prefix + ' ...')
    # to_path = rec_dir

    # download lst file and im2rec script
    script_path = os.path.join(rec_dir, 'im2rec.py')
    script_url = 'https://raw.githubusercontent.com/apache/incubator-mxnet/master/tools/im2rec.py'
    download(script_url, script_path)

    lst_path = os.path.join(rec_dir, prefix + '.lst')
    lst_url = 'http://data.mxnet.io/models/imagenet/resnet/' + prefix + '.lst'
    download(lst_url, lst_path)

    # execution
    import sys
    cmd = [
github CanyonWind / Single-Path-One-Shot-NAS-MXNet / train_imagenet.py View on Github external
opt.rec_val, opt.rec_val_idx,
                                                    batch_size, num_workers)
    else:
        train_data, val_data, batch_fn = get_data_loader(opt.data_dir, batch_size, num_workers)

    if opt.mixup:
        train_metric = mx.metric.RMSE()
    else:
        train_metric = mx.metric.Accuracy()
    acc_top1 = mx.metric.Accuracy()
    acc_top5 = mx.metric.TopKAccuracy(5)

    save_frequency = opt.save_frequency
    if opt.save_dir and save_frequency:
        save_dir = opt.save_dir
        makedirs(save_dir)
    else:
        save_dir = ''
        save_frequency = 0

    def mixup_transform(label, classes, lam=1, eta=0.0):
        if isinstance(label, nd.NDArray):
            label = [label]
        res = []
        for l in label:
            y1 = l.one_hot(classes, on_value = 1 - eta + eta/classes, off_value = eta/classes)
            y2 = l[::-1].one_hot(classes, on_value = 1 - eta + eta/classes, off_value = eta/classes)
            res.append(lam*y1 + (1-lam)*y2)
        return res

    def smooth(label, classes, eta=0.1):
        if isinstance(label, nd.NDArray):
github dmlc / gluon-cv / scripts / classification / cifar / train_mixup_cifar10.py View on Github external
model_name = opt.model
    if model_name.startswith('cifar_wideresnet'):
        kwargs = {'classes': classes,
                'drop_rate': opt.drop_rate}
    else:
        kwargs = {'classes': classes}
    net = get_model(model_name, **kwargs)
    model_name += '_mixup'
    if opt.resume_from:
        net.load_parameters(opt.resume_from, ctx = context)
    optimizer = 'nag'

    save_period = opt.save_period
    if opt.save_dir and save_period:
        save_dir = opt.save_dir
        makedirs(save_dir)
    else:
        save_dir = ''
        save_period = 0

    plot_name = opt.save_plot_dir

    logging_handlers = [logging.StreamHandler()]
    if opt.logging_dir:
        logging_dir = opt.logging_dir
        makedirs(logging_dir)
        logging_handlers.append(logging.FileHandler('%s/train_cifar10_%s.log'%(logging_dir, model_name)))

    logging.basicConfig(level=logging.INFO, handlers = logging_handlers)
    logging.info(opt)

    transform_train = transforms.Compose([
github dmlc / gluon-cv / scripts / datasets / imagenet.py View on Github external
def build_rec_process(img_dir, train=False, num_thread=1):
    rec_dir = os.path.abspath(os.path.join(img_dir, '../rec'))
    makedirs(rec_dir)
    prefix = 'train' if train else 'val'
    print('Building ImageRecord file for ' + prefix + ' ...')
    to_path = rec_dir

    # download lst file and im2rec script
    script_path = os.path.join(rec_dir, 'im2rec.py')
    script_url = 'https://raw.githubusercontent.com/apache/incubator-mxnet/master/tools/im2rec.py'
    download(script_url, script_path)

    lst_path = os.path.join(rec_dir, prefix + '.lst')
    lst_url = 'http://data.mxnet.io/models/imagenet/resnet/' + prefix + '.lst'
    download(lst_url, lst_path)

    # execution
    import sys
    cmd = [