How to use the gluoncv.data.COCODetection function in gluoncv

To help you get started, we’ve selected a few gluoncv examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github dmlc / gluon-cv / scripts / detection / ssd / eval_ssd.py View on Github external
def get_dataset(dataset, data_shape):
    if dataset.lower() == 'voc':
        val_dataset = gdata.VOCDetection(splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(data_shape, data_shape))
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return val_dataset, val_metric
github dmlc / gluon-cv / scripts / detection / center_net / eval_center_net.py View on Github external
def get_dataset(dataset, data_shape):
    if dataset.lower() == 'voc':
        val_dataset = gdata.VOCDetection(splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(data_shape, data_shape), post_affine=get_post_transform)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return val_dataset, val_metric
github dmlc / gluon-cv / scripts / detection / faster_rcnn / train_faster_rcnn.py View on Github external
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    if args.mixup:
        from gluoncv.data.mixup import detection
        train_dataset = detection.MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric
github zzdang / cascade_rcnn_gluon / scripts / detection / cascade_rcnn / eval_cascade_rcnn.py View on Github external
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.75, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval',
                                         cleanup=not args.save_json)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return val_dataset, val_metric
github zzdang / cascade_rcnn_gluon / scripts / detection / faster_rcnn / train_faster_rcnn_2.py View on Github external
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017')
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric
github dmlc / gluon-cv / gluoncv / model_zoo / mask_rcnn / mask_rcnn.py View on Github external
Filter top proposals before NMS in testing of RPN.
    rpn_test_post_nms : int, default is 300
        Return top proposal results after NMS in testing of RPN.
    ctx : Context, default CPU
        The context in which to load the pretrained weights.
    root : str, default '~/.mxnet/models'
        Location for keeping the model parameters.

    Examples
    --------
    >>> model = mask_rcnn_fpn_bn_mobilenet1_0_coco(pretrained=True)
    >>> print(model)
    """
    from ..mobilenet import mobilenet1_0
    from ...data import COCODetection
    classes = COCODetection.CLASSES
    pretrained_base = False if pretrained else pretrained_base
    rcnn_max_dets = rpn_test_post_nms if rcnn_max_dets > rpn_test_post_nms else rcnn_max_dets
    gluon_norm_kwargs = {'num_devices': num_devices} if num_devices >= 1 else {}
    sym_norm_kwargs = {'ndev': num_devices} if num_devices >= 1 else {}
    base_network = mobilenet1_0(pretrained=pretrained_base, norm_layer=SyncBatchNorm,
                                norm_kwargs=gluon_norm_kwargs, **kwargs)
    features = FPNFeatureExpander(
        network=base_network,
        outputs=['relu6_fwd', 'relu10_fwd', 'relu22_fwd', 'relu26_fwd'],
        num_filters=[256, 256, 256, 256], use_1x1=True,
        use_upsample=True, use_elewadd=True, use_p6=True, no_bias=False, pretrained=pretrained_base,
        norm_layer=mx.sym.contrib.SyncBatchNorm, norm_kwargs=sym_norm_kwargs)
    top_features = None
    box_features = nn.HybridSequential()
    box_features.add(nn.AvgPool2D(pool_size=(3, 3), strides=2, padding=1))  # reduce to 7x7
    box_features.add(nn.Conv2D(256, 3, padding=1),
github zzdang / cascade_rcnn_gluon / scripts / detection / faster_rcnn / train_faster_rcnn.py View on Github external
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(val_dataset, args.save_prefix + '_eval', cleanup=True)
    else:
        raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
    return train_dataset, val_dataset, val_metric
github Angzz / fcos-gluon-cv / gluoncv / model_zoo / fcos / fcos.py View on Github external
def fcos_resnet50_v1_coco(pretrained=False, pretrained_base=True, **kwargs):
    from ..resnet import resnet50_v1
    from ...data import COCODetection
    classes = COCODetection.CLASSES
    pretrained_base = False if pretrained else pretrained_base
    base_network = resnet50_v1(pretrained=pretrained_base, **kwargs)
    features = RetinaFeatureExpander(network=base_network,
                                     pretrained=pretrained_base,
                                     outputs=['stage2_activation3',
                                              'stage3_activation5',
                                              'stage4_activation2'])
    return get_fcos(name="resnet50_v1", dataset="coco", pretrained=pretrained,
                    features=features, classes=classes, base_stride=128, short=800,
                    max_size=1333, norm_layer=None, norm_kwargs=None,
                    valid_range=[(512, np.inf), (256, 512), (128, 256), (64, 128), (0, 64)],
                    nms_thresh=0.6, nms_topk=1000, save_topk=100)
github sufeidechabei / gluon-mobilenet-yolov3 / train_yolo3_mobilenet.py View on Github external
def get_dataset(dataset, args):
    if dataset.lower() == 'voc':
        train_dataset = gdata.VOCDetection(
            splits=[(2007, 'trainval'), (2012, 'trainval')])
        val_dataset = gdata.VOCDetection(
            splits=[(2007, 'test')])
        val_metric = VOC07MApMetric(
            iou_thresh=0.5, class_names=val_dataset.classes)
    elif dataset.lower() == 'coco':
        train_dataset = gdata.COCODetection(
            splits='instances_train2017', use_crowd=False)
        val_dataset = gdata.COCODetection(
            splits='instances_val2017', skip_empty=False)
        val_metric = COCODetectionMetric(
            val_dataset, args.save_prefix + '_eval', cleanup=True,
            data_shape=(args.data_shape, args.data_shape))
    else:
        raise NotImplementedError(
            'Dataset: {} not implemented.'.format(dataset))
    if args.num_samples < 0:
        args.num_samples = len(train_dataset)
    if args.mixup:
        from gluoncv.data import MixupDetection
        train_dataset = MixupDetection(train_dataset)
    return train_dataset, val_dataset, val_metric
github sufeidechabei / gluon-mobilenet-yolov3 / yolo3.py View on Github external
from gluoncv.data import COCODetection
    from mobilenet import get_mobilenet
    pretrained_base = False if pretrained else pretrained_base
    base_net = get_mobilenet(
        multiplier=1,
        pretrained=pretrained_base,
        num_sync_bn_devices=num_sync_bn_devices,
        **kwargs)
    stages = [base_net.features[:33],
              base_net.features[33:69],
              base_net.features[69:-2]]

    anchors = [[10, 13, 16, 30, 33, 23], [30, 61, 62,
                                          45, 59, 119], [116, 90, 156, 198, 373, 326]]
    strides = [8, 16, 32]
    classes = COCODetection.CLASSES
    return get_yolov3(
        'mobile', stages, [512, 256, 128], anchors, strides, classes, 'coco',
        pretrained=pretrained, num_sync_bn_devices=num_sync_bn_devices, **kwargs)