How to use the gluoncv.data.ImageNet1kAttr function in gluoncv

To help you get started, we’ve selected a few gluoncv examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github dmlc / gluon-cv / gluoncv / model_zoo / resnext.py View on Github external
num_layers, str(resnext_spec.keys()))
    layers = resnext_spec[num_layers]
    net = ResNext(layers, cardinality, bottleneck_width, use_se=use_se, deep_stem=deep_stem,
                  avg_down=avg_down, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        if not use_se:
            net.load_parameters(get_model_file('resnext%d_%dx%dd' % (num_layers, cardinality,
                                                                     bottleneck_width),
                                               tag=pretrained, root=root), ctx=ctx)
        else:
            net.load_parameters(get_model_file('se_resnext%d_%dx%dd' % (num_layers, cardinality,
                                                                        bottleneck_width),
                                               tag=pretrained, root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long

    return net
github dmlc / gluon-cv / gluoncv / model_zoo / mobilenet.py View on Github external
norm_kwargs : dict
        Additional `norm_layer` arguments, for example `num_devices=4`
        for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    net = MobileNetV2(multiplier, norm_layer=norm_layer, norm_kwargs=norm_kwargs, **kwargs)

    if pretrained:
        from .model_store import get_model_file
        version_suffix = '{0:.2f}'.format(multiplier)
        if version_suffix in ('1.00', '0.50'):
            version_suffix = version_suffix[:-1]
        net.load_parameters(get_model_file('mobilenetv2_%s' % version_suffix,
                                           tag=pretrained,
                                           root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long
    return net
github dmlc / gluon-cv / gluoncv / model_zoo / mobilenetv3.py View on Github external
[5, 576, 96, True, 'hard_swish', 1],
            ]
        cls_ch_squeeze = 576
        cls_ch_expand = 1280
    else:
        raise NotImplementedError
    net = _MobileNetV3(cfg, cls_ch_squeeze, \
                        cls_ch_expand, multiplier=multiplier, \
                        final_drop=0.2, norm_layer=norm_layer, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        net.load_parameters(get_model_file('mobilenetv3_%s' % model_name,
                                           tag=pretrained,
                                           root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long
    return net
github dmlc / gluon-cv / gluoncv / model_zoo / resnetv1b.py View on Github external
norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`)
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    last_gamma : bool, default False
        Whether to initialize the gamma of the last BatchNorm layer in each bottleneck to zero.
    use_global_stats : bool, default False
        Whether forcing BatchNorm to use global statistics instead of minibatch statistics;
        optionally set to True if finetuning using ImageNet classification pretrained models.
    """
    model = ResNetV1b(BasicBlockV1b, [3, 4, 6, 3], name_prefix='resnetv1b_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnet%d_v%db'%(34, 1),
                                             tag=pretrained, root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model
github dmlc / gluon-cv / gluoncv / model_zoo / resnet.py View on Github external
block_type, layers, channels = resnet_spec[num_layers]
    assert 1 <= version <= 2, \
        "Invalid resnet version: %d. Options are 1 and 2."%version
    resnet_class = resnet_net_versions[version-1]
    block_class = resnet_block_versions[version-1][block_type]
    net = resnet_class(block_class, layers, channels, use_se=use_se, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        if not use_se:
            net.load_parameters(get_model_file('resnet%d_v%d'%(num_layers, version),
                                               tag=pretrained, root=root), ctx=ctx)
        else:
            net.load_parameters(get_model_file('se_resnet%d_v%d'%(num_layers, version),
                                               tag=pretrained, root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long
    return net
github dmlc / gluon-cv / gluoncv / model_zoo / senet.py View on Github external
Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    norm_kwargs : dict
        Additional `norm_layer` arguments, for example `num_devices=4`
        for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    assert num_layers in resnext_spec, \
        "Invalid number of layers: %d. Options are %s" % (
            num_layers, str(resnext_spec.keys()))
    layers = resnext_spec[num_layers]
    net = SENet(layers, cardinality, bottleneck_width, avg_down, **kwargs)
    if pretrained:
        from .model_store import get_model_file
        net.load_parameters(get_model_file('senet_%d' % (num_layers + 2),
                                           root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long
    return net
github dmlc / gluon-cv / gluoncv / model_zoo / resnetv1b.py View on Github external
ctx : Context, default CPU
        The context in which to load the pretrained weights.
    dilated: bool, default False
        Whether to apply dilation strategy to ResNetV1b, yielding a stride 8 model.
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`).
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    model = ResNetV1b(BottleneckV1b, [3, 4, 23, 3], deep_stem=True,
                      name_prefix='resnetv1c_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnet%d_v%dc'%(101, 1),
                                             tag=pretrained, root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model
github sufeidechabei / gluon-mobilenet-yolov3 / mobilenet.py View on Github external
num_sync_bn_devices=num_sync_bn_devices,
        **kwargs)
    if pretrained:
        from gluoncv.model_zoo.model_store import get_model_file
        version_suffix = '{0:.2f}'.format(multiplier)
        if version_suffix in ('1.00', '0.50'):
            version_suffix = version_suffix[:-1]
        net.load_parameters(
            get_model_file(
                'mobilenet%s' %
                version_suffix,
                tag=pretrained,
                root=root),
            ctx=ctx)
        from gluoncv.data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        net.synset = attrib.synset
        net.classes = attrib.classes
        net.classes_long = attrib.classes_long
    return net
github dmlc / gluon-cv / gluoncv / model_zoo / resnetv1b.py View on Github external
ctx : Context, default CPU
        The context in which to load the pretrained weights.
    dilated: bool, default False
        Whether to apply dilation strategy to ResNetV1b, yielding a stride 8 model.
    norm_layer : object
        Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`).
        Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`.
    """
    model = ResNetV1b(BottleneckV1b, [3, 4, 6, 3], deep_stem=True, avg_down=True,
                      name_prefix='resnetv1d_', **kwargs)
    if pretrained:
        from .model_store import get_model_file
        model.load_parameters(get_model_file('resnet%d_v%dd'%(50, 1),
                                             tag=pretrained, root=root), ctx=ctx)
        from ..data import ImageNet1kAttr
        attrib = ImageNet1kAttr()
        model.synset = attrib.synset
        model.classes = attrib.classes
        model.classes_long = attrib.classes_long
    return model