How to use the deephyper.model.arch function in deephyper

To help you get started, we’ve selected a few deephyper examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github deephyper / deephyper / deephyper / model / trainer / tf.py View on Github external
def preprocess_data(self):
        self.train_X = self.config[a.data][a.train_X]
        self.train_y = self.config[a.data][a.train_Y]
        perm = np.random.permutation(np.shape(self.train_X)[0])
        self.train_X = self.train_X[perm]
        self.train_y = self.train_y[perm]
        self.valid_X = self.config[a.data][a.valid_X]
        self.valid_y = self.config[a.data][a.valid_Y]
        self.train_size = np.shape(self.config[a.data][a.train_X])[0]
        #if self.train_size == self.batch_size: self.train_size = self.train_X.shape[1]
        logger.debug(f'\ntrain_X.shape = {self.train_X.shape},\n\
                       train_y.shape = {self.train_y.shape},\n\
                       input_shape = {self.input_shape}')
        self.train_X = self.train_X.reshape(
            [-1]+self.input_shape).astype('float32')
        self.valid_X = self.valid_X.reshape(
            [-1]+self.input_shape).astype('float32')
        self.np_label_type = 'float32' if self.num_outputs == 1 else 'int64'
        self.train_y = np.squeeze(self.train_y).astype(self.np_label_type)
        self.valid_y = np.squeeze(self.valid_y).astype(self.np_label_type)

        logger.debug(f'\n after reshaping: train_X.shape = {self.train_X.shape},\n\
                           train_y.shape = {self.train_y.shape},\n\
github deephyper / deephyper / deephyper / run / nas.py View on Github external
# logger.debug(f'[STEP] num worker = {config["num_worker"]}')
    # logger.debug(f'[STEP] step = {config["step"]}')
    logger.debug('[PARAM] Creating StateSpace')
    config['state_space'] = StateSpace(config['state_space'], config['num_layers'])
    logger.debug('[PARAM] StateSpace created')

    logger.debug('[PARAM] Loading data')
    load_data = import_module(param_dict['load_data_module_name']).load_data

    # Loading data
    (t_X, t_y), (v_X, v_y) = load_data(dest='DATA')
    logger.debug('[PARAM] Data loaded')

    config['input_shape'] = list(np.shape(t_X))[1:]

    config[a.data] = { a.train_X: t_X,
                       a.train_Y: t_y,
                       a.valid_X: v_X,
                       a.valid_Y: v_y }

    action = config['arch_seq']
    logger.debug(f'[ACTION] = {action}')
    architecture = config['state_space'].action2dict(config, action)
    logger.debug(f'[ARCHIT] = {pformat(architecture)}')

    # For all the Net generated by the CONTROLLER
    trainer = BasicTrainer(config)

    # Run the trainer and get the rewards
    reward = trainer.get_rewards(architecture)
    logger.debug(f'[REWARD/RESULT] = {reward}')
    result = reward
github deephyper / deephyper / deephyper / model / builder / tf.py View on Github external
net = tf.layers.conv2d(net, filters=num_filters, kernel_size=[filter_height, filter_width],
                                               strides=[
                                                   stride_height, stride_width], padding=padding,
                                               kernel_initializer=weights_initializer, activation=activation, reuse=reuse,
                                               name=arch_key + '/{0}'.format(a.conv2D))
                    if pool_height != 1 and pool_width !=1:
                        net = tf.layers.max_pooling2d(net, [pool_height, pool_width], strides=[1, 1])
                elif layer_type == a.conv1D:
                    conv_params = layer_params
                    num_filters = conv_params[a.num_filters]
                    filter_size = conv_params[a.filter_size]
                    padding = conv_params[a.padding]
                    stride_size = conv_params[a.stride_size]
                    pool_size = conv_params[a.pool_size]
                    if conv_params[a.batch_norm]:
                        if conv_params[a.batch_norm_bef]:
                            net = tf.layers.conv1d(net,
                                                   filters=num_filters,
                                                   kernel_size=[filter_size],
                                                   strides=[stride_size],
                                                   padding=padding,
                                                   kernel_initializer=weights_initializer,
                                                   activation=None,
                                                   reuse=reuse,
                                                   name=arch_key + '/{0}'.format(a.conv1D))
                            net = tf.layers.batch_normalization(
                                    net,
                                    reuse=reuse,
                                    name=arch_key + '/{0}'.format(a.batch_norm))
                            net = activation(net)
                        else:
                            net = tf.layers.conv1d(net, filters=num_filters, kernel_size=[filter_size],
github deephyper / deephyper / deephyper / model / builder / tf.py View on Github external
a.activation] in self.act_dict else tf.nn.relu
                if 'skip_conn' in layer_params:
                    net = self.get_layer_input(nets, layer_params['skip_conn'])
                else:
                    net = nets[-1]
                if layer_type == a.conv2D:
                    conv_params = self.conv2D_params.copy()
                    conv_params.update(layer_params)
                    num_filters = conv_params[a.num_filters]
                    filter_width = conv_params[a.filter_width]
                    filter_height = conv_params[a.filter_height]
                    padding = conv_params[a.padding]
                    stride_height = conv_params[a.stride_height]
                    stride_width = conv_params[a.stride_width]
                    pool_width = conv_params[a.pool_width]
                    pool_height = conv_params[a.pool_height]
                    if conv_params[a.batch_norm]:
                        if conv_params[a.batch_norm_bef]:
                            net = tf.layers.conv2d(net, filters=num_filters, kernel_size=[filter_height, filter_width], strides=[
                                                   stride_height, stride_width], padding=padding, kernel_initializer=weights_initializer,activation=None, reuse=reuse, name=arch_key+'/{0}'.format(a.conv2D))
                            net = tf.layers.batch_normalization(
                                net, reuse=reuse, name=arch_key+'/{0}'.format(a.batch_norm))
                            net = activation(net)
                        else:
                            net = tf.layers.conv2d(net,
                                                   filters=num_filters,
                                                   kernel_size=[filter_height,
                                                                filter_width],
                                                   strides=[stride_height, stride_width], padding=padding,
                                                   kernel_initializer=weights_initializer,activation=activation,
                                                   reuse=reuse,
                                                   name=arch_key + '/{0}'.format(a.conv2D))
github deephyper / deephyper / deephyper / model / builder / tf.py View on Github external
reuse=reuse,
                                                   name=arch_key + '/{0}'.format(a.tempconv))
                            net = tf.layers.batch_normalization(
                                net,
                                reuse=reuse,
                                name=arch_key + '/{0}'.format(a.batch_norm))
                            net = activation(net)
                        else:
                            net = tf.layers.conv1d(net, filters=num_filters, kernel_size=[filter_size],
                                                   strides=[
                                                       stride_size], padding=padding, dilation_rate = dilation,
                                                   kernel_initializer=weights_initializer,
                                                   data_format='channels_last',
                                                   activation=activation,
                                                   reuse=reuse,
                                                   name=arch_key + '/{0}'.format(a.tempconv))
                            net = tf.layers.batch_normalization(
                                net, reuse=reuse, name=arch_key + '/{0}'.format(a.batch_norm))
                    else:
                        net = tf.layers.conv1d(net,
                                               filters=num_filters,
                                               kernel_size=[filter_size],
                                               strides=[stride_size],
                                               padding=padding,
                                               dilation_rate=dilation,
                                               kernel_initializer=weights_initializer, activation=activation,
                                               reuse=reuse,
                                               data_format='channels_last',
                                               name=arch_key + '/{0}'.format(a.tempconv))
                    net = tf.contrib.layers.layer_norm(net)
                    if pool_size != 1:
                        net = tf.layers.max_pooling1d(net, (pool_size,), strides=1)
github deephyper / deephyper / deephyper / model / trainer / tf.py View on Github external
def preprocess_data(self):
        self.train_X = self.config[a.data][a.train_X]
        self.train_y = self.config[a.data][a.train_Y]
        perm = np.random.permutation(np.shape(self.train_X)[0])
        self.train_X = self.train_X[perm]
        self.train_y = self.train_y[perm]
        self.valid_X = self.config[a.data][a.valid_X]
        self.valid_y = self.config[a.data][a.valid_Y]
        self.train_size = np.shape(self.config[a.data][a.train_X])[0]
        #if self.train_size == self.batch_size: self.train_size = self.train_X.shape[1]
        logger.debug(f'\ntrain_X.shape = {self.train_X.shape},\n\
                       train_y.shape = {self.train_y.shape},\n\
                       input_shape = {self.input_shape}')
        self.train_X = self.train_X.reshape(
            [-1]+self.input_shape).astype('float32')
        self.valid_X = self.valid_X.reshape(
            [-1]+self.input_shape).astype('float32')
        self.np_label_type = 'float32' if self.num_outputs == 1 else 'int64'
github deephyper / deephyper / deephyper / model / builder / tf.py View on Github external
def __init__(self, config, arch_def):
        self.hyper_params = config[a.hyperparameters]
        self.learning_rate = config[a.hyperparameters][a.learning_rate]
        self.optimizer_name = config[a.hyperparameters][a.optimizer]
        self.batch_size = config[a.hyperparameters][a.batch_size]
        self.loss_metric_name = config[a.hyperparameters][a.loss_metric]
        self.max_grad_norm = config[a.hyperparameters][a.max_grad_norm]
        self.test_metric_name = config[a.hyperparameters][a.test_metric]
        self.num_steps = config[a.num_steps] #for image it is [IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS], for vector [NUM_ATTRIBUTES]
        self.num_outputs = config[a.num_outputs]
        self.num_features = config[a.num_features]
        self.text_input = config[a.text_input]
        self.regression = config[a.regression]
        self.eval_batch_size = config[a.hyperparameters][a.eval_batch_size]
        self.unit_type = config[a.unit_type]
        self.arch_def = arch_def
        self.vocab_size = len(config[a.data][a.vocabulary])
        self.conv1D_params = { a.num_filters: 32,
                               a.filter_size: 3,
                               a.stride_size: 1,
                               a.pool_size: 1,
                               a.drop_out: 1,
                               a.padding: 'SAME',
                               a.activation: a.relu,
                               a.batch_norm: False,
                               a.batch_norm_bef: True}
        self.conv2D_params = { a.num_filters: 32,
                               a.filter_height: 3,
                               a.filter_width: 3,
                               a.stride_height: 1,
github deephyper / deephyper / deephyper / model / trainer / tf.py View on Github external
def preprocess_data(self):
        self.train_X = self.config[a.data][a.train_X]
        self.train_y = self.config[a.data][a.train_Y]
        perm = np.random.permutation(np.shape(self.train_X)[0])
        self.train_X = self.train_X[perm]
        self.train_y = self.train_y[perm]
        self.valid_X = self.config[a.data][a.valid_X]
        self.valid_y = self.config[a.data][a.valid_Y]
        self.train_size = np.shape(self.config[a.data][a.train_X])[0]
        #if self.train_size == self.batch_size: self.train_size = self.train_X.shape[1]
        logger.debug(f'\ntrain_X.shape = {self.train_X.shape},\n\
                       train_y.shape = {self.train_y.shape},\n\
                       input_shape = {self.input_shape}')
        self.train_X = self.train_X.reshape(
            [-1]+self.input_shape).astype('float32')
        self.valid_X = self.valid_X.reshape(
            [-1]+self.input_shape).astype('float32')
        self.np_label_type = 'float32' if self.num_outputs == 1 else 'int64'
        self.train_y = np.squeeze(self.train_y).astype(self.np_label_type)
        self.valid_y = np.squeeze(self.valid_y).astype(self.np_label_type)

        logger.debug(f'\n after reshaping: train_X.shape = {self.train_X.shape},\n\
                           train_y.shape = {self.train_y.shape},\n\
                           input_shape = {self.input_shape}')
github deephyper / deephyper / model / nas.py View on Github external
logger.debug(f'[STEP] num worker = {config["num_worker"]}')
    logger.debug(f'[STEP] step = {config["step"]}')
    logger.debug('[PARAM] Creating StateSpace')
    config['state_space'] = a.StateSpace(config['state_space'])
    logger.debug('[PARAM] StateSpace created')

    logger.debug('[PARAM] Loading data')
    load_data = import_module(param_dict['load_data_module_name']).load_data

    # Loading data
    (t_X, t_y), (v_X, v_y) = load_data(dest='DATA')
    logger.debug('[PARAM] Data loaded')

    config['input_shape'] = list(np.shape(t_X))[1:]

    config[a.data] = { a.train_X: t_X,
                       a.train_Y: t_y,
                       a.valid_X: v_X,
                       a.valid_Y: v_y }

    action = config['arch_seq']
    logger.debug(f'[ACTION] = {action}')
    architecture = action2dict_v2(config, action, config['num_layers'])
    logger.debug(f'[ARCHIT] = {pformat(architecture)}')

    # For all the Net generated by the CONTROLLER
    trainer = BasicTrainer(config)

    arch_def = architecture
    global_step = config['global_step']

    # Run the trainer and get the rewards
github deephyper / deephyper / model / ptb_nas.py View on Github external
logger.debug('[PARAM] StateSpace created')

    logger.debug('[PARAM] Loading data')
    load_data = import_module(param_dict['load_data_module_name']).load_data

    # Loading data
    config['num_steps'] = 10
    data_cfg = {'num_steps':config['num_steps'], 'batch_size':config['hyperparameters']['batch_size'], 'dest':'/Users/Dipendra/Projects/deephyper/benchmarks/ptbNas/DATA'}
    (t_X, t_y), (v_X, v_y), (test_X, test_y), vocab = load_data(data_cfg)
    logger.debug('[PARAM] Data loaded')

    config['input_shape'] = list(np.shape(t_X))[1:]

    config[a.data] = { a.train_X: t_X,
                       a.train_Y: t_y,
                       a.valid_X: v_X,
                       a.valid_Y: v_y ,
                       a.test_X: test_X,
                       a.test_Y: test_y,
                       a.vocabulary: vocab}
    config[a.vocab_size] = len(vocab)
    action = config['arch_seq']
    logger.debug(f'[ACTION] = {action[0]}')
    architecture = action2dict_v2(config, action, config['num_layers'])
    logger.debug(f'[ARCHIT] = {pformat(architecture)}')

    # For all the Net generated by the CONTROLLER
    trainer = BasicTrainer(config)

    arch_def = architecture
    global_step = config['global_step']