Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
callbacks_list = [timeout_monitor]
timer.start('model training')
train_history = model.fit(x_train, y_train, callbacks=callbacks_list, batch_size=BATCH_SIZE,
initial_epoch=initial_epoch, epochs=EPOCHS, validation_split=0.30)#, validation_data=(x_val, y_val))
timer.end()
score = model.evaluate(x_val, y_val, batch_size=BATCH_SIZE)
print('===Validation loss:', score[0])
print('===Validation accuracy:', score[1])
print('OUTPUT:', -score[1])
if model_path:
timer.start('model save')
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
return -score[1]
#earlystop = EarlyStopping(monitor='val_acc', min_delta=0.0001, patience=50, verbose=1, mode='auto')
timeout_monitor = TerminateOnTimeOut(TIMEOUT)
callbacks_list = [timeout_monitor]
timer.start('model training')
print('Training')
model.fit([x, xq], y, callbacks=callbacks_list, batch_size=BATCH_SIZE, initial_epoch=initial_epoch,
epochs=EPOCHS, validation_split=0.30)
timer.end()
loss, acc = model.evaluate([tx, txq], ty, batch_size=BATCH_SIZE)
print('Test loss / test accuracy = {:.4f} / {:.4f}'.format(loss, acc))
print('OUTPUT:', -acc)
if model_path:
timer.start('model save')
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
return -acc
print(' - timeout: training time = %2.3fs/%2.3fs' % (elapsed, TIMEOUT * 60))
break
training_timer.end()
# Testing
test_loss, test_acc = evaluate_preds(preds, [y_test], [idx_test])
print("Test set results:",
"loss= {:.4f}".format(test_loss[0]),
"accuracy= {:.4f}".format(test_acc[0]))
print('===Validation accuracy:', test_acc[0])
print('OUTPUT:', -test_acc[0])
if model_path:
timer.start('model save')
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
return -test_acc[0]
batch_size=BATCH_SIZE,
epochs=EPOCHS,
initial_epoch=initial_epoch,
verbose=1,
callbacks=callbacks_list,
validation_split = 0.3)
#validation_data=(x_test, y_test))
timer.end()
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
if model_path:
timer.start('model save')
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
print('OUTPUT:', -score[1])
return -score[1]
batch_size=BATCH_SIZE,
initial_epoch=initial_epoch,
epochs=EPOCHS,
verbose=1,
callbacks=callbacks_list,
validation_split = 0.3)
#validation_data=(x_test, y_test))
timer.end()
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
if model_path:
timer.start('model save')
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
print('OUTPUT:', -score[1])
return -score[1]
a -= lr * grad_a
b -= lr * grad_b
timer.end()
print(f"training done\na={a}\nb={b}")
predict = linear(training_x, a, b)
error = predict - training_y
mse = 0.5 * (error**2).sum() / n_pt
mse += penalty
print("OUTPUT:", mse)
if model_path:
timer.start('model save')
model = Model(a, b)
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
print(f"saved model to {model_path} and MDA to {model_mda_path}")
return mse
print('===Validation loss:', score[0])
print('===Validation accuracy:', score[1])
print('===Training Time', start_time - end_time)
print('OUTPUT:', -score[1])
#train_loss = train_history.history['loss']
#val_acc = train_history.history['val_acc']
#print('===Train loss:', train_loss[-1])
#print('===Validation accuracy:', val_acc[-1])
#print('OUTPUT:', -val_acc[-1])
if model_path:
timer.start('model save')
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
return -score[1]
datagen.flow(x_train, y_train, batch_size=BATCH_SIZE),
callbacks=callbacks_list,
epochs=EPOCHS,
steps_per_epoch=steps_per_epoch,
initial_epoch=initial_epoch,
#validation_split=0.10,
#validation_data=(x_test, y_test),
validation_data=datagen.flow(x_test, y_test, batch_size=BATCH_SIZE),
validation_steps=10,
workers=1)
timer.end()
if model_path:
timer.start('model save')
model.save(model_path)
util.save_meta_data(param_dict, model_mda_path)
timer.end()
loss, acc = model.evaluate(x_test, y_test, batch_size=BATCH_SIZE)
print('Test loss / test accuracy = {:.4f} / {:.4f}'.format(loss, acc))
print('OUTPUT:', -acc)
return -acc