How to use the deephyper.benchmarks_hps.util function in deephyper

To help you get started, we’ve selected a few deephyper examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github deephyper / deephyper / deephyper / benchmarks_hps / cifar10cnn / main.py View on Github external
(x_train, y_train), (x_test, y_test) = load_data()
    if verbose == 1:
        print("x_train shape:", x_train.shape)
        print(x_train.shape[0], "train samples")
        print(x_test.shape[0], "test samples")

    timer.end() # stage in

    timer.start("preprocessing")

    # Convert class vectors to binary class matrices.
    y_train = to_categorical(y_train, num_classes)
    y_test  = to_categorical(y_test, num_classes)

    if model_path:
        savedModel = util.resume_from_disk(BNAME, param_dict, data_dir=model_path)
        model_mda_path = savedModel.model_mda_path
        model_path = savedModel.model_path
        model = savedModel.model
        initial_epoch = savedModel.initial_epoch
    else:
        model_mda_path = None
        model          = None
        initial_epoch  = 0

    if not model:
        model = Sequential()

        model.add(Conv2D(F1_UNITS, (F1_SIZE, F1_SIZE), strides = (STRIDE1, STRIDE1), padding=PADDING_C1,
                        input_shape=x_train.shape[1:], activation=ACTIVATION1))
        model.add(Conv2D(F1_UNITS, (F1_SIZE, F1_SIZE), strides = (STRIDE1, STRIDE1), padding=PADDING_C1, activation=ACTIVATION2))
        model.add(MaxPooling2D(pool_size=(P_SIZE, P_SIZE), padding=PADDING_P1))
github deephyper / deephyper / deephyper / benchmarks_hps / cifar10cnn / main.py View on Github external
def build_parser():
    # Build this benchmark's parser on top of the common parser.
    parser = build_base_parser()

    # Benchmark specific hyperparameters.
    parser.add_argument("--data_augmentation", action="store", type=util.str2bool, dest="data_augmentation",
                        default=False, help="boolean. data_augmentation?")

    parser.add_argument("--f1_size", action="store", dest="f1_size",
                        nargs="?", const=2, type=int, default=3,
                        help="Filter 1 dim")

    parser.add_argument("--f2_size", action="store", dest="f2_size",
                        nargs="?", const=2, type=int, default=3,
                        help="Filter 2 dim")

    parser.add_argument("--f1_units", action="store", dest="f1_units",
                        nargs="?", const=2, type=int, default=32,
                        help="Filter 1 units")

    parser.add_argument("--f2_units", action="store", dest="f2_units",
                        nargs="?", const=2, type=int, default=64,
github deephyper / deephyper / deephyper / benchmarks_hps / mnistmlp / main.py View on Github external
# Set random seeds for reproducability: https://keras.io/getting-started/faq/#how-can-i-obtain-reproducible-results-using-keras-during-development
import numpy as np
import tensorflow as tf
import random as rn
import os
os.environ["PYTHONHASHSEED"] = "0"
np.random.seed(42)
rn.seed(12345)
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
from keras import backend as K
tf.set_random_seed(1234)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)

from deephyper.benchmarks_hps import util
timer = util.Timer()
timer.start("module loading")

import sys
import keras
from pprint import pprint
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers import Embedding
from keras.layers import Conv1D, GlobalMaxPooling1D
from keras.datasets import imdb
from keras.preprocessing import sequence
from deephyper.benchmarks_hps.cliparser import build_base_parser
from keras.callbacks import EarlyStopping, TerminateOnNaN
import math
github deephyper / deephyper / deephyper / benchmarks_hps / cifar10_resnet_v2 / main.py View on Github external
# Add classifier on top.
            # v2 has BN-ReLU before Pooling
            x = BatchNormalization()(x)
            x = Activation('relu')(x)
            x = AveragePooling2D(pool_size=8)(x)
            y = Flatten()(x)
            outputs = Dense(num_classes,
                            activation='softmax',
                            kernel_initializer='he_normal')(y)

            # Instantiate model.
            model = Model(inputs=inputs, outputs=outputs)
            return model

    if MODEL_PATH:
        savedModel     = util.resume_from_disk(BNAME, param_dict, data_dir=MODEL_PATH)
        model_mda_path = savedModel.model_mda_path
        MODEL_PATH     = savedModel.model_path
        model          = savedModel.model
        initial_epoch  = savedModel.initial_epoch
    else:
        model          = None
        model_mda_path = None
        initial_epoch  = 0

    if model is None:
        model = resnet_v2(input_shape=input_shape, depth=depth)
        model.compile(loss='categorical_crossentropy',
                    optimizer=OPTIMIZER,
                    metrics=['accuracy'])
        #model.summary()
github deephyper / deephyper / deephyper / benchmarks_hps / imdb_fasttext / main.py View on Github external
def run(param_dict=None, verbose=2):
    """Run a param_dict on the imdbcnn benchmark."""
    # Read in values from CLI if no param dict was specified and clean up the param dict.
    param_dict = util.handle_cli(param_dict, build_parser())

    # Display the filled in param dict.
    if verbose:
        print("PARAM_DICT_CLEAN=")
        pprint(param_dict)

    timer.start("stage in")

    # if param_dict['data_source']:
    #     data_source = param_dict['data_source']
    # else:
    #     data_source = os.path.dirname(os.path.abspath(__file__))
    #     data_source = os.path.join(data_source, 'data')

    ngram_range = 1 
    MAX_FEATURES = param_dict['max_features'] # = 20000
github deephyper / deephyper / deephyper / benchmarks_hps / mnistcnn / main.py View on Github external
def run(param_dict=None, verbose=2):
    """Run a param_dict on the MNISTCNN benchmark."""
    # Read in values from CLI if no param_dict was specified and clean up the param dict.
    param_dict = util.handle_cli(param_dict, build_parser())

    # Display the filled in param dict.
    if verbose:
        print("PARAM_DICT_CLEAN=")
        pprint(param_dict)

    # Get values from param_dict.
    # Hyperparameters
    ACTIVATION1    = util.get_activation_instance(param_dict['activation1'], param_dict['alpha1'])
    ACTIVATION2    = util.get_activation_instance(param_dict['activation2'], param_dict['alpha2'])
    ACTIVATION3    = util.get_activation_instance(param_dict['activation3'], param_dict['alpha3'])
    ACTIVATION4    = util.get_activation_instance(param_dict['activation4'], param_dict['alpha4'])
    ACTIVATION5    = util.get_activation_instance(param_dict['activation5'], param_dict['alpha5'])
    BATCH_SIZE    = param_dict["batch_size"]
    DROPOUT       = param_dict["dropout"]
    EPOCHS        = param_dict["epochs"]
    F1_SIZE       = param_dict["f1_size"]
    F2_SIZE       = param_dict["f2_size"]
    F1_UNITS      = param_dict["f1_units"]
    F2_UNITS      = param_dict["f2_units"]
    MAX_POOL      = param_dict["max_pool"]
    NUNITS        = param_dict["nunits"]
    OPTIMIZER     = util.get_optimizer_instance(param_dict)
    PADDING_C1    = param_dict["padding_c1"]
    PADDING_C2    = param_dict["padding_c2"]
    PADDING_P1    = param_dict["padding_p1"]
github deephyper / deephyper / deephyper / benchmarks_hps / reutersmlp / main.py View on Github external
def run(param_dict=None, verbose=2):
    """Run a param_dict on the reutersmlp benchmark."""
    # Read in values from CLI if no param dict was specified and clean up the param dict.
    param_dict = util.handle_cli(param_dict, build_parser())

    # Display the parsed param dict.
    if verbose:
        print("PARAM_DICT_CLEAN=")
        pprint(param_dict)

    # Get values from param_dict.
    # Hyperparameters
    ACTIVATION1    = util.get_activation_instance(param_dict["activation1"], param_dict["alpha1"])
    ACTIVATION2    = util.get_activation_instance(param_dict["activation2"], param_dict["alpha2"])
    ACTIVATION3    = util.get_activation_instance(param_dict["activation3"], param_dict["alpha3"])
    ACTIVATION4    = util.get_activation_instance(param_dict["activation4"], param_dict["alpha4"])
    ACTIVATION5    = util.get_activation_instance(param_dict["activation5"], param_dict["alpha5"])
    BATCH_SIZE    = param_dict["batch_size"]
    DROPOUT       = param_dict["dropout"]
    EPOCHS        = param_dict["epochs"]
    MAX_WORDS     = param_dict["max_words"]
    NHIDDEN       = param_dict['nhidden']
    NUNITS        = param_dict["nunits"]
    OPTIMIZER     = util.get_optimizer_instance(param_dict)
    SKIP_TOP      = param_dict["skip_top"]

    # Other
    model_path    = param_dict["model_path"]

    # Constants
    patience  = math.ceil(EPOCHS/2)