Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
anost = logbook.stream
liso = [item.rstrip() for item in anost.split("\t")]
mse = float(liso[3])
print(anost)
stri += anost + '\n'
print("generation done")
# file_ob.write(str(logbook.stream))
# print(len(pop))
# file_ob.close()
time5 = time.time()
print("Overall time", time5 - time4)
#print(stri)
print( ' ------------------------------------src done------------------------------------------- ')
fronts = tools.sortNondominated(pop_src, len(pop_src))
toolbox.register("mutate", mymutate_tar)
pareto_front = fronts[0]
print(pareto_front)
print("Pareto Front: ")
st='\n\n'
pareto_log_fileo = open("./log_folder/log_pareto_main1_nll_mse_misc_com"+str(NGEN)+".txt", "a")
pareto_logo = open("pareto_front.txt", "a")
sti = 'source\n\n'
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
st += str(pareto_front[i].fitness.values)+'\n'
for obj_val in pareto_front[i].fitness.values:
sti += str(obj_val)+' '
sti += '\n'
pareto_log_fileo.write(st + '\n')
anost = logbook.stream
liso = [item.rstrip() for item in anost.split("\t")]
mse = float(liso[3])
print(anost)
stri += anost + '\n'
print("generation done")
# file_ob.write(str(logbook.stream))
# print(len(pop))
# file_ob.close()
time5 = time.time()
print("Overall time", time5 - time4)
#print(stri)
print( ' ------------------------------------src done------------------------------------------- ')
fronts = tools.sortNondominated(pop_src, len(pop_src))
toolbox.register("mutate", mymutate_tar)
pareto_front = fronts[0]
print(pareto_front)
print("Pareto Front: ")
st='\n\n'
pareto_log_fileo = open("./log_folder/log_pareto_main1_perc_nll_mse_misc_com"+str(NGEN)+".txt", "a")
to_add_lis = []
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
if(pareto_front[i].fitness.values[-1] <= indim*outdim+2):
st += str(pareto_front[i].fitness.values)+'\n'
to_add_lis.append(pareto_front[i])
pareto_log_fileo.write(st +str(len(to_add_lis))+ '\n\n')
pareto_log_fileo.close()
diff = MU - len(to_add_lis)
anost = logbook.stream
liso = [item.rstrip() for item in anost.split("\t")]
mse = float(liso[3])
print(anost)
stri += anost + '\n'
print("generation done")
# file_ob.write(str(logbook.stream))
# print(len(pop))
# file_ob.close()
time5 = time.time()
print("Overall time", time5 - time4)
# print(stri)
print(' ------------------------------------src done------------------------------------------- ')
fronts = tools.sortNondominated(pop_src, len(pop_src))
toolbox.register("mutate", mymutate_tar)
pareto_front = fronts[0]
print(pareto_front)
print("Pareto Front: ")
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
return pareto_front, logbook
def test_it_without_bp():
pop, stats = main()
stringh = "_without_bp"
fronts = tools.sortNondominated(pop, len(pop))
if len(fronts[0]) < 30:
pareto_front = fronts[0]
else:
pareto_front = random.sample(fronts[0], 30)
print("Pareto Front: ")
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
neter = Neterr(indim, outdim, n_hidden, random)
print("\ntest: test on one with min validation error", neter.test_err(min(pop, key=lambda x: x.fitness.values[1])))
tup = neter.test_on_pareto_patch(pareto_front)
print("\n test: avg on sampled pareto set", tup[0], "least found avg", tup[1])
def test_it_without_bp():
pop, stats = main()
stringh = "_without_bp"
fronts = tools.sortNondominated(pop, len(pop))
if len(fronts[0]) < 30:
pareto_front = fronts[0]
else:
pareto_front = random.sample(fronts[0], 30)
print("Pareto Front: ")
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
neter = Neterr(indim, outdim, n_hidden, np.random)
print("\ntest: test on one with min validation error", neter.test_err(min(pop, key=lambda x: x.fitness.values[1])))
tup = neter.test_on_pareto_patch(pareto_front)
print("\n test: avg on sampled pareto set", tup[0], "least found avg", tup[1])
def test_it_with_bp(play = 1,NGEN = 100, MU = 4*25, play_with_whole_pareto = 0):
pop, stats = main( play = play, NGEN = NGEN, MU = MU)
stringh = "_with_bp_approach2_perc_nll_mse_misc_com"+str(play)+"_"+str(NGEN)
fronts = tools.sortNondominated(pop, len(pop))
'''file_ob = open("./log_folder/log_for_graph.txt", "w+")
for item in fronts[0]:
st = str(item.fitness.values[0]) + " " + str(item.fitness.values[1])+"\n"
file_ob.write( st )
file_ob.close()'''
if play_with_whole_pareto or len(fronts[0]) < 30 :
pareto_front = fronts[0]
else:
pareto_front = random.sample(fronts[0], 30)
print("Pareto Front: ")
for i in range(len(pareto_front)):
def test_it_without_bp():
pop, stats = main(NGEN = 80 , MU = 4 * 25)
stringh = "_without_bp"
fronts = tools.sortNondominated(pop, len(pop))
if len(fronts[0]) < 30:
pareto_front = fronts[0]
else:
pareto_front = random.sample(fronts[0], 30)
print("Pareto Front: ")
for i in range(len(pareto_front)):
print(pareto_front[i].fitness.values)
neter = Neterr(indim, outdim, n_hidden, np.random)
print("\ntest: test on one with min validation error", neter.test_err(min(pop, key=lambda x: x.fitness.values[1])))
tup = neter.test_on_pareto_patch_correctone(pareto_front)
print("\n test: avg on sampled pareto set", tup)