Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
key=operator.attrgetter("height"), max_value=17))
toolbox.decorate("mutate", gp.staticLimit(
key=operator.attrgetter("height"), max_value=17))
pop = toolbox.population(n=population_size) # population_size arguments
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, cxpb=crossover_rate,
mutpb=mutation_rate, ngen=generations, stats=mstats, halloffame=hof, verbose=False) # crossover_rate, mutation_rate, generations
stats_table = []
statslist = ["avg", "max", "min", "std"]
statsterm = ["fitness", "size"]
# make header
stats_table_header = []
stats_table_header.append('gen')
stats_table_header.append('nevals')
for j in range(len(statsterm)):
for p in range(len(statslist)):
stats_table_header.append(statsterm[j] + '_' + statslist[p])
for i in range(generations + 1):
stats_table.append([log[i]['gen'], log[i]['nevals']])
for j in range(len(statsterm)):
for p in range(len(statslist)):
stats_table[i].append(
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.nanmean)
stats.register("min", np.nanmin)
stats.register("max", np.nanmax)
stats.register("std", np.nanstd)
# History
hist = tools.History()
toolbox.decorate("mate", hist.decorator)
toolbox.decorate("mutate", hist.decorator)
hist.update(pop)
if verbose:
print('--- Evolve in {0} possible combinations ---'.format(np.prod(np.array(maxints) + 1)))
pop, logbook = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2,
ngen=generations_number, stats=stats,
halloffame=hof, verbose=verbose)
current_best_score_ = hof[0].fitness.values[0]
current_best_params_ = _individual_to_params(hof[0], name_values)
# Generate score_cache with real parameters
_, individuals, each_scores = zip(*[(idx, indiv, np.mean(indiv.fitness.values))
for idx, indiv in list(hist.genealogy_history.items())
if indiv.fitness.valid and not np.all(np.isnan(indiv.fitness.values))])
unique_individuals = {str(indiv): (indiv, score) for indiv, score in zip(individuals, each_scores)}
score_results = tuple([(_individual_to_params(indiv, name_values), score)
for indiv, score in unique_individuals.values()])
if verbose:
print("Best individual is: %s\nwith fitness: %s" % (
def main():
random.seed(21)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 40, stats, halloffame=hof)
return pop, stats, hof
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(fitness=lambda ind: ind.fitness.values,
size=lambda ind: len(ind))
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats, halloffame=hof)
infos = stats.select('gen', fitness=['avg'], size=['avg', 'std'])
print(infos['gen'])
print(infos['fitness'])
print(zip(*infos['size']))
return pop, stats, hof
def main():
random.seed(69)
with open("ant/santafe_trail.txt") as trail_file:
ant.parse_matrix(trail_file)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.5, 0.2, 40, stats, halloffame=hof)
return pop, hof, stats
def main():
# random.seed(10)
pop = toolbox.population(n=40)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", numpy.mean)
stats.register("std", numpy.std)
stats.register("min", numpy.min)
stats.register("max", numpy.max)
algorithms.eaSimple(pop, toolbox, 0.8, 0.1, 40, stats, halloffame=hof)
return pop, stats, hof
toolbox.register(
"evaluate", evaluate_quantum_algorithm, input_set=input_set, target_set=target_set, gates=gates)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
pop = toolbox.population(n=500)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.5, ngen=50, stats=stats, halloffame=hof, verbose=True)
print 'Best individual:'
output_quantum_gates(dna_to_gates(list(hof[0]), gates))
run_quantum_algorithm_over_set(input_set, target_set, gates, dna_to_gates(list(hof[0]), gates))
def main(seed=0):
random.seed(seed)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("Avg", numpy.mean)
stats.register("Std", numpy.std)
stats.register("Min", numpy.min)
stats.register("Max", numpy.max)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=100, stats=stats,
halloffame=hof, verbose=True)
return pop, stats, hof
def main():
random.seed(318)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats_fit = tools.Statistics(lambda ind: ind.fitness.values)
stats_size = tools.Statistics(len)
mstats = tools.MultiStatistics(fitness=stats_fit, size=stats_size)
mstats.register("avg", numpy.mean)
mstats.register("std", numpy.std)
mstats.register("min", numpy.min)
mstats.register("max", numpy.max)
pop, log = algorithms.eaSimple(pop, toolbox, 0.5, 0.1, 40, stats=mstats,
halloffame=hof, verbose=True)
# print log
return pop, log, hof