Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
maxi = 0
stri = ''
flag= 0
# Begin the generational process
# print(pop.__dir__())
time4 = time.time()
for gen in range(1, NGEN):
# Vary the population
if gen == 1:
time6 = time.time()
if gen == NGEN-1:
time7 = time.time()
offspring = tools.selTournamentDCD(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
if gen == 1:
print("1st gen after clone",time.time() - time6)
if gen == NGEN-1:
print("last gen after clone", time.time() - time7)
if play :
if play == 1:
pgen = NGEN*0.1
elif play == 2 :
pgen = NGEN*0.9
if gen == int(pgen):
print("gen:",gen, "doing clustering")
to_bp_lis = cluster.give_cluster_head(offspring, int(MU*bp_rate))
assert (to_bp_lis[0] in offspring )
print( "doing bp")
# print(pop)
record = stats.compile(pop_tar)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
maxi = 0
stri = ''
flag= 0
# Begin the generational process
# print(pop.__dir__())
NGEN = NGEN
for gen in range(1, NGEN):
# Vary the population
print()
print("here in gen no.", gen)
offspring = tools.selTournamentDCD(pop_tar, len(pop_tar))
offspring = [toolbox.clone(ind) for ind in offspring]
if play :
if play == 1:
pgen = NGEN*0.1
elif play == 2 :
pgen = NGEN*0.9
if gen == int(pgen):
print("gen:",gen, "doing clustering")
to_bp_lis = cluster.give_cluster_head(offspring, int(MU*bp_rate))
assert (to_bp_lis[0] in offspring )
print( "doing bp")
[ item.modify_thru_backprop(indim, outdim, network_obj_tar.rest_setx, network_obj_tar.rest_sety, epochs=20, learning_rate=0.1, n_par=10) for item in to_bp_lis]
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
# print(pop)
record = stats.compile(pop_tar)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
maxi = 0
stri = ''
flag= 0
# Begin the generational process
# print(pop.__dir__())
NGEN = NGEN
for gen in range(1, NGEN):
# Vary the population
print()
print("here in gen no.", gen)
offspring = tools.selTournamentDCD(pop_tar, len(pop_tar))
offspring = [toolbox.clone(ind) for ind in offspring]
if play :
if play == 1:
pgen = NGEN*0.1
elif play == 2 :
pgen = NGEN*0.9
if gen == int(pgen):
print("gen:",gen, "doing clustering")
to_bp_lis = cluster.give_cluster_head(offspring, int(MU*bp_rate))
assert (to_bp_lis[0] in offspring )
print( "doing bp")
[ item.modify_thru_backprop(indim, outdim, network_obj_tar.rest_setx, network_obj_tar.rest_sety, epochs=20, learning_rate=0.1, n_par=10) for item in to_bp_lis]
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
assign_names(pop)
fitnesses = (yield (pop, invalid_ind, param_history))
assign_check_fitness(invalid_ind, fitnesses,
param_history, deap_params['choices'],
evo_params['score_weights'])
# Forces assignment of crowding distance for
# NSGA2 - no selection is done here
pop = toolbox.select(pop, len(pop))
# Find the best in original population for
# comparison on stop conditions
temp_pop = copy.deepcopy(pop)
original_fitness = toolbox.select(temp_pop, 1)[0].fitness.values
del temp_pop
eval_stop = eval_stop_wrapper(evo_params, original_fitness)
for gen in range(1, ngen):
offspring1 = tools.selTournamentDCD(pop, len(pop))
offspring2 = [toolbox.clone(ind) for ind in offspring1]
offspring3 = []
for off1, off2 in zip(offspring1, offspring2):
off2.name = off1.name
offspring3.append(off2)
offspring = offspring3
try:
for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
if random.random() <= cxpb:
toolbox.mate(ind1, ind2)
if random.random() < mutpb:
toolbox.mutate(ind1)
if random.random() < mutpb:
toolbox.mutate(ind2)
del ind1.fitness.values, ind2.fitness.values
maxi = 0
stri = ''
flag= 0
# Begin the generational process
# print(pop.__dir__())
time4 = time.time()
for gen in range(1, NGEN):
# Vary the population
if gen == 1:
time6 = time.time()
if gen == NGEN-1:
time7 = time.time()
print()
print("here in gen no.", gen)
offspring = tools.selTournamentDCD(pop_src, len(pop_src))
offspring = [toolbox.clone(ind) for ind in offspring]
if play :
if play == 1:
pgen = NGEN*0.1
elif play == 2 :
pgen = NGEN*0.9
if gen == int(pgen):
print("gen:",gen, "doing clustering")
to_bp_lis = cluster.give_cluster_head(offspring, int(MU*bp_rate))
assert (to_bp_lis[0] in offspring )
print( "doing bp")
[ item.modify_thru_backprop(indim, outdim, network_obj_src.rest_setx, network_obj_src.rest_sety, epochs=20, learning_rate=0.1, n_par=10) for item in to_bp_lis]
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# This is just to assign the crowding distance to the individuals
# no actual selection is done
pop = toolbox.select(pop, len(pop))
record = stats.compile(pop)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
# Begin the generational process
for gen in range(1, NGEN):
# Vary the population
offspring = tools.selTournamentDCD(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
if random.random() <= CXPB:
toolbox.mate(ind1, ind2)
toolbox.mutate(ind1)
toolbox.mutate(ind2)
del ind1.fitness.values, ind2.fitness.values
# Evaluate the individuals with an invalid fitness
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# This is just to assign the crowding distance to the individuals
# no actual selection is done
pop = toolbox.select(pop, len(pop))
# print(pop)
record = stats.compile(pop)
logbook.record(gen=0, evals=len(invalid_ind), **record)
print(logbook.stream)
maxi = 0
stri = ''
flag= 0
# Begin the generational process
# print(pop.__dir__())
for gen in range(1, NGEN):
# Vary the population
offspring = tools.selTournamentDCD(pop, len(pop))
offspring = [toolbox.clone(ind) for ind in offspring]
if play :
if play == 1:
pgen = NGEN*0.1
elif play == 2 :
pgen = NGEN*0.9
if gen == int(pgen):
print("gen:",gen, "doing clustering")
to_bp_lis = cluster.give_cluster_head(offspring, int(MU*bp_rate))
assert (to_bp_lis[0] in offspring )
print( "doing bp")
[ item.modify_thru_backprop(indim, outdim, network_obj.rest_setx, network_obj.rest_sety, epochs=10, learning_rate=0.1, n_par=10) for item in to_bp_lis]
for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
# print(ind1.fitness.values)