Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
'label': slim.tfexample_decoder.Tensor('image/class/label'),
'label_text': slim.tfexample_decoder.Tensor('image/class/text'),
'object/bbox': slim.tfexample_decoder.BoundingBox(
['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'),
'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'),
}
decoder = slim.tfexample_decoder.TFExampleDecoder(
keys_to_features, items_to_handlers)
labels_to_names = None
if dataset_utils.has_labels(dataset_dir):
labels_to_names = dataset_utils.read_label_file(dataset_dir)
else:
labels_to_names = create_readable_names_for_imagenet_labels()
dataset_utils.write_label_file(labels_to_names, dataset_dir)
return slim.dataset.Dataset(
data_sources=file_pattern,
reader=reader,
decoder=decoder,
num_samples=_SPLITS_TO_SIZES[split_name],
items_to_descriptions=_ITEMS_TO_DESCRIPTIONS,
num_classes=_NUM_CLASSES,
labels_to_names=labels_to_names)
# Divide into train and test:
random.seed(_RANDOM_SEED)
random.shuffle(photo_filenames)
training_filenames = photo_filenames[_NUM_VALIDATION:]
validation_filenames = photo_filenames[:_NUM_VALIDATION]
# First, convert the training and validation sets.
_convert_dataset('train', training_filenames, class_names_to_ids,
dataset_dir)
_convert_dataset('validation', validation_filenames, class_names_to_ids,
dataset_dir)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(class_names)), class_names))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the Flowers dataset!')
# Divide into train and test:
random.seed(_RANDOM_SEED)
random.shuffle(photo_filenames)
training_filenames = photo_filenames[_NUM_VALIDATION:]
validation_filenames = photo_filenames[:_NUM_VALIDATION]
# First, convert the training and validation sets.
_convert_dataset('train', training_filenames, class_names_to_ids,
dataset_dir)
_convert_dataset('validation', validation_filenames, class_names_to_ids,
dataset_dir)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(class_names)), class_names))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the Flowers dataset!')
_convert_dataset_with_text('train', training_filenames, class_names_to_ids,
dataset_dir, df_dict, tfrecords_subdir)
_convert_dataset_with_text('validation', validation_filenames, class_names_to_ids,
dataset_dir, df_dict, tfrecords_subdir)
# Write the train/validation split size
train_valid_split = dict(zip(['train', 'validation'], [len(photo_filenames) - num_valid, num_valid]))
train_valid_filename = os.path.join(dataset_dir, photos_subdir, _TRAIN_VALID_FILENAME)
with tf.gfile.Open(train_valid_filename, 'w') as f:
for split_name in train_valid_split:
size = train_valid_split[split_name]
f.write('%s:%d\n' % (split_name, size))
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(class_names)), class_names))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir, photos_subdir)
#_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the dataset!')
# Divide into train and test:
random.seed(_RANDOM_SEED)
random.shuffle(photo_filenames)
training_filenames = photo_filenames[_NUM_VALIDATION:]
validation_filenames = photo_filenames[:_NUM_VALIDATION]
# First, convert the training and validation sets.
_convert_dataset('train', training_filenames, class_names_to_ids,
dataset_dir)
_convert_dataset('validation', validation_filenames, class_names_to_ids,
dataset_dir)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(class_names)), class_names))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the Flowers dataset!')
# Divide into train and test:
random.seed(_RANDOM_SEED)
random.shuffle(photo_filenames)
_NUM_VALIDATION = int(len(photo_filenames) * _PERCENT_VALIDATION)
training_filenames = photo_filenames[_NUM_VALIDATION:]
validation_filenames = photo_filenames[:_NUM_VALIDATION]
# First, convert the training and validation sets.
_convert_dataset('train', training_filenames, class_names_to_ids,
FLAGS.dataset_dir)
_convert_dataset('validation', validation_filenames, class_names_to_ids,
FLAGS.dataset_dir)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(class_names)), class_names))
dataset_utils.write_label_file(labels_to_class_names, FLAGS.dataset_dir)
print('\nFinished converting the Arts dataset!')
# First, process the training data:
with tf.python_io.TFRecordWriter(training_filename) as tfrecord_writer:
data_filename = os.path.join(dataset_dir, _TRAIN_DATA_FILENAME)
labels_filename = os.path.join(dataset_dir, _TRAIN_LABELS_FILENAME)
_add_to_tfrecord(data_filename, labels_filename, 60000, tfrecord_writer)
# Next, process the testing data:
with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
data_filename = os.path.join(dataset_dir, _TEST_DATA_FILENAME)
labels_filename = os.path.join(dataset_dir, _TEST_LABELS_FILENAME)
_add_to_tfrecord(data_filename, labels_filename, 10000, tfrecord_writer)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the MNIST dataset!')
for i in range(_NUM_TRAIN_FILES):
filename = os.path.join(dataset_dir,
'cifar-10-batches-py',
'data_batch_%d' % (i + 1)) # 1-indexed.
offset = _add_to_tfrecord(filename, tfrecord_writer, offset)
# Next, process the testing data:
with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
filename = os.path.join(dataset_dir,
'cifar-10-batches-py',
'test_batch')
_add_to_tfrecord(filename, tfrecord_writer)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
#_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the Cifar10 dataset!')
filenames.append(os.path.join(dataset_dir,
'cifar-10-batches-py',
'data_batch_%d' % (i + 1))) # 1-indexed.
_add_to_tfrecord(filenames, 'train', dataset_dir)
# Next, process the testing data:
#with tf.python_io.TFRecordWriter(testing_filename) as tfrecord_writer:
filenames = []
filenames.append( os.path.join(dataset_dir,
'cifar-10-batches-py',
'test_batch'))
_add_to_tfrecord(filenames, 'test', dataset_dir)
# Finally, write the labels file:
labels_to_class_names = dict(zip(range(len(_CLASS_NAMES)), _CLASS_NAMES))
dataset_utils.write_label_file(labels_to_class_names, dataset_dir)
_clean_up_temporary_files(dataset_dir)
print('\nFinished converting the Cifar10 dataset!')