Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/format': bytes_feature(image_format),
'image/filename': bytes_feature(name.encode('utf-8')),
'image/encoded': bytes_feature(image_data)}))
return example
'image/shape': int64_feature(shape),
'image/filename': bytes_feature(filename.encode('utf-8')),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/x1': float_feature(x1),
'image/object/bbox/y1': float_feature(y1),
'image/object/bbox/x2': float_feature(x2),
'image/object/bbox/y2': float_feature(y2),
'image/object/bbox/x3': float_feature(x3),
'image/object/bbox/y3': float_feature(y3),
'image/object/bbox/x4': float_feature(x4),
'image/object/bbox/y4': float_feature(y4),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/object/bbox/ignored': int64_feature(ignored),
'image/format': bytes_feature(image_format),
'image/encoded': bytes_feature(image_data)}))
return example
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/format': bytes_feature(image_format),
'image/encoded': bytes_feature(image_data)}))
return example
xmin, xmax, ymin, ymax, area = [], [], [], [], []
for obj in annotations['objects']:
(x, y, width, height) = tuple(obj['bbox'])
xmin.append(float(x) / image_width)
xmax.append(float(x + width) / image_width)
ymin.append(float(y) / image_height)
ymax.append(float(y + height) / image_height)
area.append(obj['area'])
feature_dict = {
'image/height':
dataset_utils.int64_feature(image_height),
'image/width':
dataset_utils.int64_feature(image_width),
'image/filename':
dataset_utils.bytes_feature(filename.encode('utf8')),
'image/source_id':
dataset_utils.bytes_feature(str(image_id).encode('utf8')),
'image/key/sha256':
dataset_utils.bytes_feature(key.encode('utf8')),
'image/encoded':
dataset_utils.bytes_feature(encoded_jpg),
'image/format':
dataset_utils.bytes_feature('jpeg'.encode('utf8')),
'image/class/label':
dataset_utils.int64_feature(annotations['label']),
'image/object/bbox/xmin':
dataset_utils.float_list_feature(xmin),
'image/object/bbox/xmax':
dataset_utils.float_list_feature(xmax),
'image/object/bbox/ymin':
dataset_utils.float_list_feature(ymin),
xmin = list(nbbox[:, 1])
ymax = list(nbbox[:, 2])
xmax = list(nbbox[:, 3])
print 'shape: {}, height:{}, width:{}'.format(shape,shape[0],shape[1])
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(label),
'image/format': bytes_feature('jpeg'),
'image/encoded': bytes_feature(image_data),
'image/name': bytes_feature(imname.tostring()),
}))
return example
# _visualizePose(roi_mask_list_0[2], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[3], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[4], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[5], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[6], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[7], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[8], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[9], scipy.misc.imread(img_path_0))
# pdb.set_trace()
else:
return None
example = tf.train.Example(features=tf.train.Features(feature={
'image_name_0': dataset_utils.bytes_feature(pairs[i][0]),
'image_name_1': dataset_utils.bytes_feature(pairs[i][1]),
'image_raw_0': dataset_utils.bytes_feature(image_raw_0),
'image_raw_1': dataset_utils.bytes_feature(image_raw_1),
'label': dataset_utils.int64_feature(labels[i]),
'id_0': dataset_utils.int64_feature(id_map[id_0]),
'id_1': dataset_utils.int64_feature(id_map[id_1]),
'cam_0': dataset_utils.int64_feature(-1),
'cam_1': dataset_utils.int64_feature(-1),
'image_format': dataset_utils.bytes_feature(_IMG_PATTERN),
'image_height': dataset_utils.int64_feature(height),
'image_width': dataset_utils.int64_feature(width),
'real_data': dataset_utils.int64_feature(1),
'attrs_0': dataset_utils.int64_feature(attrs_0),
'attrs_1': dataset_utils.int64_feature(attrs_1),
'pose_peaks_0_rcv': dataset_utils.float_feature(pose_peaks_0_rcv.flatten().tolist()),
'pose_peaks_1_rcv': dataset_utils.float_feature(pose_peaks_1_rcv.flatten().tolist()),
'pose_mask_r4_0': dataset_utils.int64_feature(pose_mask_r4_0.astype(np.int64).flatten().tolist()),
'pose_mask_r4_1': dataset_utils.int64_feature(pose_mask_r4_1.astype(np.int64).flatten().tolist()),
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/format': bytes_feature(image_format),
'image/encoded': bytes_feature(image_data)}))
return example
# pylint: disable=expression-not-assigned
[l.append(point) for l, point in zip([ymin, xmin, ymax, xmax], b)]
# pylint: enable=expression-not-assigned
image_format = b'JPEG'
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(xmin),
'image/object/bbox/xmax': float_feature(xmax),
'image/object/bbox/ymin': float_feature(ymin),
'image/object/bbox/ymax': float_feature(ymax),
'image/object/bbox/label': int64_feature(labels),
'image/object/bbox/label_text': bytes_feature(labels_text),
'image/object/bbox/difficult': int64_feature(difficult),
'image/object/bbox/truncated': int64_feature(truncated),
'image/format': bytes_feature(image_format),
'image/filename': bytes_feature(name.encode('utf-8')),
'image/encoded': bytes_feature(image_data)}))
return example
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': int64_feature(shape[0]),
'image/width': int64_feature(shape[1]),
'image/channels': int64_feature(shape[2]),
'image/shape': int64_feature(shape),
'image/object/bbox/xmin': float_feature(bbox_x1_list),
'image/object/bbox/xmax': float_feature(bbox_x2_list),
'image/object/bbox/ymin': float_feature(bbox_y1_list),
'image/object/bbox/ymax': float_feature(bbox_y2_list),
'image/object/bbox/label': int64_feature(label_list),
'image/object/bbox/label_text': bytes_feature(type_list),
'image/object/bbox/occlusion': int64_feature(occl_list),
'image/object/bbox/truncation': float_feature(trun_list),
'image/object/observation/alpha': float_feature(alpha_list),
'image/format': bytes_feature(image_format),
'image/encoded': bytes_feature(image_data),
'image/object/3Dbbox/h': float_feature(ddd_bbox_h_list),
'image/object/3Dbbox/w': float_feature(ddd_bbox_w_list),
'image/object/3Dbbox/l': float_feature(ddd_bbox_l_list),
'image/object/3Dbbox/x': float_feature(ddd_bbox_x_list),
'image/object/3Dbbox/y': float_feature(ddd_bbox_y_list),
'image/object/3Dbbox/z': float_feature(ddd_bbox_z_list),
'image/object/3Dbbox/ry': float_feature(ddd_bbox_ry_list)
}))
return example
# _visualizePose(roi_mask_list_0[1], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[2], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[3], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[4], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[5], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[6], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[7], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[8], scipy.misc.imread(img_path_0))
# _visualizePose(roi_mask_list_0[9], scipy.misc.imread(img_path_0))
# pdb.set_trace()
else:
return None
example = tf.train.Example(features=tf.train.Features(feature={
'image_name_0': dataset_utils.bytes_feature(pairs[i][0]),
'image_name_1': dataset_utils.bytes_feature(pairs[i][1]),
'image_raw_0': dataset_utils.bytes_feature(image_raw_0),
'image_raw_1': dataset_utils.bytes_feature(image_raw_1),
'label': dataset_utils.int64_feature(labels[i]),
'id_0': dataset_utils.int64_feature(id_map[id_0]),
'id_1': dataset_utils.int64_feature(id_map[id_1]),
'cam_0': dataset_utils.int64_feature(-1),
'cam_1': dataset_utils.int64_feature(-1),
'image_format': dataset_utils.bytes_feature(_IMG_PATTERN),
'image_height': dataset_utils.int64_feature(height),
'image_width': dataset_utils.int64_feature(width),
'real_data': dataset_utils.int64_feature(1),
'attrs_0': dataset_utils.int64_feature(attrs_0),
'attrs_1': dataset_utils.int64_feature(attrs_1),
'pose_peaks_0_rcv': dataset_utils.float_feature(pose_peaks_0_rcv.flatten().tolist()),
'pose_peaks_1_rcv': dataset_utils.float_feature(pose_peaks_1_rcv.flatten().tolist()),
'pose_mask_r4_0': dataset_utils.int64_feature(pose_mask_r4_0.astype(np.int64).flatten().tolist()),