Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
train_data (numpy.ndarray or pandas.DataFrame):
Training Data. It must be a 2-dimensional numpy array or a
pandas.DataFrame.
discrete_columns (list-like):
List of discrete columns to be used to generate the Conditional
Vector. If ``train_data`` is a Numpy array, this list should
contain the integer indices of the columns. Otherwise, if it is
a ``pandas.DataFrame``, this list should contain the column names.
epochs (int):
Number of training epochs. Defaults to 300.
log_frequency (boolean):
Whether to use log frequency of categorical levels in conditional
sampling. Defaults to ``True``.
"""
self.transformer = DataTransformer()
self.transformer.fit(train_data, discrete_columns)
train_data = self.transformer.transform(train_data)
data_sampler = Sampler(train_data, self.transformer.output_info)
data_dim = self.transformer.output_dimensions
self.cond_generator = ConditionalGenerator(
train_data,
self.transformer.output_info,
log_frequency
)
self.generator = Generator(
self.embedding_dim + self.cond_generator.n_opt,
self.gen_dim,
data_dim