Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def fit(self, train_data, categorical_columns=tuple(), ordinal_columns=tuple()):
self.transformer = DataTransformer()
self.transformer.fit(train_data, categorical_columns, ordinal_columns)
train_data = self.transformer.transform(train_data)
data_sampler = Sampler(train_data, self.transformer.output_info)
data_dim = self.transformer.output_dim
self.cond_generator = Cond(train_data, self.transformer.output_info)
self.generator = Generator(
self.embedding_dim + self.cond_generator.n_opt,
self.gen_dim,
data_dim
).to(self.device)
discriminator = Discriminator(
data_dim + self.cond_generator.n_opt,
self.dis_dim
).to(self.device)
optimizerG = optim.Adam(
def __init__(self, data, output_info):
super(Sampler, self).__init__()
self.data = data
self.model = []
self.n = len(data)
st = 0
skip = False
for item in output_info:
if item[1] == 'tanh':
st += item[0]
skip = True
elif item[1] == 'softmax':
if skip:
skip = False
st += item[0]
continue