How to use the ctgan.models.Discriminator function in ctgan

To help you get started, we’ve selected a few ctgan examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github DAI-Lab / CTGAN / ctgan / synthesizer.py View on Github external
data_sampler = Sampler(train_data, self.transformer.output_info)

        data_dim = self.transformer.output_dimensions
        self.cond_generator = ConditionalGenerator(
            train_data,
            self.transformer.output_info,
            log_frequency
        )

        self.generator = Generator(
            self.embedding_dim + self.cond_generator.n_opt,
            self.gen_dim,
            data_dim
        ).to(self.device)

        discriminator = Discriminator(
            data_dim + self.cond_generator.n_opt,
            self.dis_dim
        ).to(self.device)

        optimizerG = optim.Adam(
            self.generator.parameters(), lr=2e-4, betas=(0.5, 0.9),
            weight_decay=self.l2scale
        )
        optimizerD = optim.Adam(discriminator.parameters(), lr=2e-4, betas=(0.5, 0.9))

        assert self.batch_size % 2 == 0
        mean = torch.zeros(self.batch_size, self.embedding_dim, device=self.device)
        std = mean + 1

        steps_per_epoch = max(len(train_data) // self.batch_size, 1)
        for i in range(epochs):
github DAI-Lab / CTGAN / ctgan / models.py View on Github external
def __init__(self, input_dim, dis_dims, pack=10):
        super(Discriminator, self).__init__()
        dim = input_dim * pack
        self.pack = pack
        self.packdim = dim
        seq = []
        for item in list(dis_dims):
            seq += [Linear(dim, item), LeakyReLU(0.2), Dropout(0.5)]
            dim = item

        seq += [Linear(dim, 1)]
        self.seq = Sequential(*seq)