Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def fit(self, X, treatment, y):
"""Fit the inference model.
Args:
X (np.matrix or np.array or pd.Dataframe): a feature matrix
treatment (np.array or pd.Series): a treatment vector
y (np.array or pd.Series): an outcome vector
"""
X, treatment, y = convert_pd_to_np(X, treatment, y)
check_treatment_vector(treatment, self.control_name)
self.t_groups = np.unique(treatment[treatment != self.control_name])
self.t_groups.sort()
self._classes = {group: i for i, group in enumerate(self.t_groups)}
self.models_mu_c = {group: deepcopy(self.model_mu_c) for group in self.t_groups}
self.models_mu_t = {group: deepcopy(self.model_mu_t) for group in self.t_groups}
self.models_tau_c = {group: deepcopy(self.model_tau_c) for group in self.t_groups}
self.models_tau_t = {group: deepcopy(self.model_tau_t) for group in self.t_groups}
self.vars_c = {}
self.vars_t = {}
for group in self.t_groups:
mask = (treatment == group) | (treatment == self.control_name)
treatment_filt = treatment[mask]
X_filt = X[mask]
y_filt = y[mask]
w = (treatment_filt == group).astype(int)
def fit(self, X, treatment, y):
"""Fit the inference model
Args:
X (np.matrix, np.array, or pd.Dataframe): a feature matrix
treatment (np.array or pd.Series): a treatment vector
y (np.array or pd.Series): an outcome vector
"""
X, treatment, y = convert_pd_to_np(X, treatment, y)
check_treatment_vector(treatment, self.control_name)
self.t_groups = np.unique(treatment[treatment != self.control_name])
self.t_groups.sort()
self._classes = {group: i for i, group in enumerate(self.t_groups)}
self.models = {group: deepcopy(self.model) for group in self.t_groups}
for group in self.t_groups:
mask = (treatment == group) | (treatment == self.control_name)
treatment_filt = treatment[mask]
X_filt = X[mask]
y_filt = y[mask]
w = (treatment_filt == group).astype(int)
X_new = np.hstack((w.reshape((-1, 1)), X_filt))
self.models[group].fit(X_new, y_filt)
def fit(self, X, treatment, y):
"""Fit the inference model
Args:
X (np.matrix or np.array or pd.Dataframe): a feature matrix
treatment (np.array or pd.Series): a treatment vector
y (np.array or pd.Series): an outcome vector
"""
X, treatment, y = convert_pd_to_np(X, treatment, y)
check_treatment_vector(treatment, self.control_name)
self.t_groups = np.unique(treatment[treatment != self.control_name])
self.t_groups.sort()
self._classes = {group: i for i, group in enumerate(self.t_groups)}
self.models_c = {group: deepcopy(self.model_c) for group in self.t_groups}
self.models_t = {group: deepcopy(self.model_t) for group in self.t_groups}
for group in self.t_groups:
mask = (treatment == group) | (treatment == self.control_name)
treatment_filt = treatment[mask]
X_filt = X[mask]
y_filt = y[mask]
w = (treatment_filt == group).astype(int)
self.models_c[group].fit(X_filt[w == 0], y_filt[w == 0])
self.models_t[group].fit(X_filt[w == 1], y_filt[w == 1])
def fit(self, X, p, treatment, y, verbose=True):
"""Fit the treatment effect and outcome models of the R learner.
Args:
X (np.matrix or np.array or pd.Dataframe): a feature matrix
p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
treatment (np.array or pd.Series): a treatment vector
y (np.array or pd.Series): an outcome vector
"""
X, treatment, y = convert_pd_to_np(X, treatment, y)
check_treatment_vector(treatment, self.control_name)
self.t_groups = np.unique(treatment[treatment != self.control_name])
self.t_groups.sort()
check_p_conditions(p, self.t_groups)
if isinstance(p, (np.ndarray, pd.Series)):
treatment_name = self.t_groups[0]
p = {treatment_name: convert_pd_to_np(p)}
elif isinstance(p, dict):
p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
self._classes = {group: i for i, group in enumerate(self.t_groups)}
self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
self.vars_c = {}
self.vars_t = {}
if verbose:
logger.info('generating out-of-fold CV outcome estimates')
def fit(self, X, p, treatment, y, verbose=True):
"""Fit the treatment effect and outcome models of the R learner.
Args:
X (np.matrix or np.array or pd.Dataframe): a feature matrix
p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
treatment (np.array or pd.Series): a treatment vector
y (np.array or pd.Series): an outcome vector
"""
X, treatment, y = convert_pd_to_np(X, treatment, y)
check_treatment_vector(treatment, self.control_name)
self.t_groups = np.unique(treatment[treatment != self.control_name])
self.t_groups.sort()
check_p_conditions(p, self.t_groups)
if isinstance(p, (np.ndarray, pd.Series)):
treatment_name = self.t_groups[0]
p = {treatment_name: convert_pd_to_np(p)}
elif isinstance(p, dict):
p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
self._classes = {group: i for i, group in enumerate(self.t_groups)}
self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
self.vars_c = {}
self.vars_t = {}
if verbose:
logger.info('generating out-of-fold CV outcome estimates')
def fit(self, X, treatment, y):
"""Fit the inference model.
Args:
X (np.matrix or np.array or pd.Dataframe): a feature matrix
treatment (np.array or pd.Series): a treatment vector
y (np.array or pd.Series): an outcome vector
"""
X, treatment, y = convert_pd_to_np(X, treatment, y)
check_treatment_vector(treatment, self.control_name)
self.t_groups = np.unique(treatment[treatment != self.control_name])
self.t_groups.sort()
self._classes = {group: i for i, group in enumerate(self.t_groups)}
self.models_mu_c = {group: deepcopy(self.model_mu_c) for group in self.t_groups}
self.models_mu_t = {group: deepcopy(self.model_mu_t) for group in self.t_groups}
self.models_tau_c = {group: deepcopy(self.model_tau_c) for group in self.t_groups}
self.models_tau_t = {group: deepcopy(self.model_tau_t) for group in self.t_groups}
self.vars_c = {}
self.vars_t = {}
for group in self.t_groups:
mask = (treatment == group) | (treatment == self.control_name)
treatment_filt = treatment[mask]
X_filt = X[mask]
y_filt = y[mask]
w = (treatment_filt == group).astype(int)