How to use the causalml.inference.meta.utils.check_p_conditions function in causalml

To help you get started, we’ve selected a few causalml examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github uber / causalml / causalml / inference / meta / rlearner.py View on Github external
def fit(self, X, p, treatment, y, verbose=True):
        """Fit the treatment effect and outcome models of the R learner.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        check_p_conditions(p, self.t_groups)
        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info('generating out-of-fold CV outcome estimates')
        yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, n_jobs=-1)

        for group in self.t_groups:
github uber / causalml / causalml / inference / meta / rlearner.py View on Github external
def fit(self, X, p, treatment, y, verbose=True):
        """Fit the treatment effect and outcome models of the R learner.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        check_p_conditions(p, self.t_groups)
        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info('generating out-of-fold CV outcome estimates')
        yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, n_jobs=-1)

        for group in self.t_groups:
github uber / causalml / causalml / inference / meta / xlearner.py View on Github external
def predict(self, X, p, treatment=None, y=None, return_components=False, verbose=True):
        """Predict treatment effects.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series, optional): a treatment vector
            y (np.array or pd.Series, optional): an outcome vector
            return_components (bool, optional): whether to return outcome for treatment and control seperately

        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_p_conditions(p, self.t_groups)
        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        dhat_cs = {}
        dhat_ts = {}

        for i, group in enumerate(self.t_groups):
            model_tau_c = self.models_tau_c[group]
            model_tau_t = self.models_tau_t[group]
            dhat_cs[group] = model_tau_c.predict(X)
            dhat_ts[group] = model_tau_t.predict(X)
github uber / causalml / causalml / inference / meta / tmle.py View on Github external
case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            segment (np.array, optional): An optional segment vector of int. If given, the ATE and its CI will be
                                          estimated for each segment.
            return_ci (bool, optional): Whether to return confidence intervals

        Returns:
            (tuple): The ATE and its confidence interval (LB, UB) for each treatment, t and segment, s
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        check_p_conditions(p, self.t_groups)
        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        ate = []
        ate_lb = []
        ate_ub = []

        for i, group in enumerate(self.t_groups):
            logger.info('Estimating ATE for group {}.'.format(group))
            w_group = (treatment == group).astype(int)
            p_group = p[group]

            if self.calibrate_propensity: