Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Convert data from volt to millivolt
# Pytorch expects float32 for input and int64 for labels.
X = (epoched.get_data() * 1e6).astype(np.float32)
y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1
train_set = SignalAndTarget(X[:60], y=y[:60])
test_set = SignalAndTarget(X[60:], y=y[60:])
from braindecode.models.shallow_fbcsp import ShallowFBCSPNet
from torch import nn
from braindecode.torch_ext.util import set_random_seeds
from braindecode.models.util import to_dense_prediction_model
# Set if you want to use GPU
# You can also use torch.cuda.is_available() to determine if cuda is available on your machine.
cuda = False
set_random_seeds(seed=20170629, cuda=cuda)
# This will determine how many crops are processed in parallel
input_time_length = 450
n_classes = 2
in_chans = train_set.X.shape[1]
# final_conv_length determines the size of the receptive field of the ConvNet
model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes,
input_time_length=input_time_length,
final_conv_length=12).create_network()
to_dense_prediction_model(model)
if cuda:
model.cuda()
from torch import optim
[
("Left Hand", [1]),
("Right Hand", [2]),
("Foot", [3]),
("Tongue", [4]),
]
)
train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)
train_set, valid_set = split_into_two_sets(
train_set, first_set_fraction=1 - valid_set_fraction
)
set_random_seeds(seed=20190706, cuda=cuda)
n_classes = 4
n_chans = int(train_set.X.shape[1])
input_time_length = train_set.X.shape[2]
if model == "shallow":
model = ShallowFBCSPNet(
n_chans,
n_classes,
input_time_length=input_time_length,
final_conv_length="auto",
).create_network()
elif model == "deep":
model = Deep4Net(
n_chans,
n_classes,
input_time_length=input_time_length,
test_cnt = mne_apply(
lambda a: exponential_running_standardize(a.T, factor_new=factor_new,
init_block_size=init_block_size,
eps=1e-4).T,
test_cnt)
marker_def = OrderedDict([('Left Hand', [1]), ('Right Hand', [2],),
('Foot', [3]), ('Tongue', [4])])
train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)
train_set, valid_set = split_into_two_sets(
train_set, first_set_fraction=1-valid_set_fraction)
set_random_seeds(seed=20190706, cuda=cuda)
n_classes = 4
n_chans = int(train_set.X.shape[1])
if model == 'shallow':
model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length,
final_conv_length=30).create_network()
elif model == 'deep':
model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length,
final_conv_length=2).create_network()
to_dense_prediction_model(model)
if cuda:
model.cuda()
log.info("Model: \n{:s}".format(str(model)))