How to use the braindecode.experiments.experiment.Experiment function in braindecode

To help you get started, we’ve selected a few braindecode examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github TNTLFreiburg / braindecode / examples / bcic_iv_2a_cropped.py View on Github external
input_time_length=input_time_length,
                                       n_preds_per_input=n_preds_per_input)

    stop_criterion = Or([MaxEpochs(max_epochs),
                         NoDecrease('valid_misclass', max_increase_epochs)])

    monitors = [LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'),
                CroppedTrialMisclassMonitor(
                    input_time_length=input_time_length), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    loss_function = lambda preds, targets: F.nll_loss(
        th.mean(preds, dim=2, keepdim=False), targets)

    exp = Experiment(model, train_set, valid_set, test_set, iterator=iterator,
                     loss_function=loss_function, optimizer=optimizer,
                     model_constraint=model_constraint,
                     monitors=monitors,
                     stop_criterion=stop_criterion,
                     remember_best_column='valid_misclass',
                     run_after_early_stop=True, cuda=cuda)
    exp.run()
    return exp
github TNTLFreiburg / braindecode / braindecode / models / base.py View on Github external
stop_criterion = MaxEpochs(0)
        train_set = SignalAndTarget(X, y)
        model_constraint = None
        valid_set = None
        test_set = None
        loss_function = self.loss
        if self.cropped:
            loss_function = lambda outputs, targets: self.loss(
                th.mean(outputs, dim=2), targets
            )

        # reset runtime monitor if exists...
        for monitor in self.monitors:
            if hasattr(monitor, "last_call_time"):
                monitor.last_call_time = time.time()
        exp = Experiment(
            self.network,
            train_set,
            valid_set,
            test_set,
            iterator=self.iterator,
            loss_function=loss_function,
            optimizer=self.optimizer,
            model_constraint=model_constraint,
            monitors=self.monitors,
            stop_criterion=stop_criterion,
            remember_best_column=None,
            run_after_early_stop=False,
            cuda=self.cuda,
            log_0_epoch=True,
            do_early_stop=False,
        )
github TNTLFreiburg / braindecode / examples / bcic_iv_2a.py View on Github external
optimizer = optim.Adam(model.parameters())

    iterator = BalancedBatchSizeIterator(batch_size=batch_size)

    stop_criterion = Or(
        [
            MaxEpochs(max_epochs),
            NoDecrease("valid_misclass", max_increase_epochs),
        ]
    )

    monitors = [LossMonitor(), MisclassMonitor(), RuntimeMonitor()]

    model_constraint = MaxNormDefaultConstraint()

    exp = Experiment(
        model,
        train_set,
        valid_set,
        test_set,
        iterator=iterator,
        loss_function=F.nll_loss,
        optimizer=optimizer,
        model_constraint=model_constraint,
        monitors=monitors,
        stop_criterion=stop_criterion,
        remember_best_column="valid_misclass",
        run_after_early_stop=True,
        cuda=cuda,
    )
    exp.run()
    return exp
github TNTLFreiburg / braindecode / braindecode / models / base.py View on Github external
if validation_data is not None:
            valid_X = _ensure_float32(validation_data[0])
            valid_y = validation_data[1]
            valid_set = SignalAndTarget(valid_X, valid_y)
        else:
            valid_set = None
        test_set = None
        self.monitors = [LossMonitor()]
        if self.cropped:
            self.monitors.append(CroppedTrialMisclassMonitor(input_time_length))
        else:
            self.monitors.append(MisclassMonitor())
        if self.extra_monitors is not None:
            self.monitors.extend(self.extra_monitors)
        self.monitors.append(RuntimeMonitor())
        exp = Experiment(
            self.network,
            train_set,
            valid_set,
            test_set,
            iterator=self.iterator,
            loss_function=loss_function,
            optimizer=optimizer,
            model_constraint=model_constraint,
            monitors=self.monitors,
            stop_criterion=stop_criterion,
            remember_best_column=remember_best_column,
            run_after_early_stop=False,
            cuda=self.cuda,
            log_0_epoch=log_0_epoch,
            do_early_stop=(remember_best_column is not None),
        )