Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
test_cnt = mne_apply(
lambda a: bandpass_cnt(a, low_cut_hz, high_cut_hz, test_cnt.info['sfreq'],
filt_order=3,
axis=1), test_cnt)
test_cnt = mne_apply(
lambda a: exponential_running_standardize(a.T, factor_new=factor_new,
init_block_size=init_block_size,
eps=1e-4).T,
test_cnt)
marker_def = OrderedDict([('Left Hand', [1]), ('Right Hand', [2],),
('Foot', [3]), ('Tongue', [4])])
train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)
train_set, valid_set = split_into_two_sets(
train_set, first_set_fraction=1-valid_set_fraction)
set_random_seeds(seed=20190706, cuda=cuda)
n_classes = 4
n_chans = int(train_set.X.shape[1])
if model == 'shallow':
model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length,
final_conv_length=30).create_network()
elif model == 'deep':
model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length,
final_conv_length=2).create_network()
init_block_size=init_block_size,
eps=1e-4,
).T,
test_cnt,
)
marker_def = OrderedDict(
[
("Left Hand", [1]),
("Right Hand", [2]),
("Foot", [3]),
("Tongue", [4]),
]
)
train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)
train_set, valid_set = split_into_two_sets(
train_set, first_set_fraction=1 - valid_set_fraction
)
set_random_seeds(seed=20190706, cuda=cuda)
n_classes = 4
n_chans = int(train_set.X.shape[1])
input_time_length = train_set.X.shape[2]
if model == "shallow":
model = ShallowFBCSPNet(
n_chans,
n_classes,
input_time_length=input_time_length,
assert len(test_cnt.ch_names) == 22
test_cnt = mne_apply(lambda a: a * 1e6, test_cnt)
test_cnt = mne_apply(
lambda a: bandpass_cnt(a, low_cut_hz, high_cut_hz, test_cnt.info['sfreq'],
filt_order=3,
axis=1), test_cnt)
test_cnt = mne_apply(
lambda a: exponential_running_standardize(a.T, factor_new=factor_new,
init_block_size=init_block_size,
eps=1e-4).T,
test_cnt)
marker_def = OrderedDict([('Left Hand', [1]), ('Right Hand', [2],),
('Foot', [3]), ('Tongue', [4])])
train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)
train_set, valid_set = split_into_two_sets(
train_set, first_set_fraction=1-valid_set_fraction)
set_random_seeds(seed=20190706, cuda=cuda)
n_classes = 4
n_chans = int(train_set.X.shape[1])
if model == 'shallow':
model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length,
final_conv_length=30).create_network()
elif model == 'deep':
model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length,
final_conv_length=2).create_network()
eps=1e-4,
).T,
test_cnt,
)
marker_def = OrderedDict(
[
("Left Hand", [1]),
("Right Hand", [2]),
("Foot", [3]),
("Tongue", [4]),
]
)
train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival)
test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival)
train_set, valid_set = split_into_two_sets(
train_set, first_set_fraction=1 - valid_set_fraction
)
set_random_seeds(seed=20190706, cuda=cuda)
n_classes = 4
n_chans = int(train_set.X.shape[1])
input_time_length = train_set.X.shape[2]
if model == "shallow":
model = ShallowFBCSPNet(
n_chans,
n_classes,
input_time_length=input_time_length,
final_conv_length="auto",