How to use the asreview.utils.get_random_state function in asreview

To help you get started, we’ve selected a few asreview examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github msdslab / automated-systematic-review / asreview / balance_strategies / triple.py View on Github external
with maximal sampling. Higher values mean higher weight.
        gamma: float
            Governs the scaling of the weight of the max samples as a function
            of the % of papers read. Higher values mean stronger scaling.
        """
        super(TripleBalance, self).__init__()
        self.a = a
        self.alpha = alpha
        self.b = b
        self.beta = beta
        self.c = c
        self.gamma = gamma
        self.shuffle = shuffle
        self.fallback_model = DoubleBalance(a=a, alpha=alpha, b=b, beta=beta,
                                            random_state=random_state)
        self._random_state = get_random_state(random_state)
github msdslab / automated-systematic-review / asreview / query_strategies / random.py View on Github external
def __init__(self, random_state=None):
        super(RandomQuery, self).__init__()
        self._random_state = get_random_state(random_state)
github msdslab / automated-systematic-review / asreview / feature_extraction / embedding_idf.py View on Github external
def __init__(self, *args, embedding_fp=None, random_state=None, **kwargs):
        """Initialize the Embedding-Idf model

        Arguments
        ---------
        embedding_fp: str
            Path to embedding.
        """
        super(EmbeddingIdf, self).__init__(*args, **kwargs)
        self.embedding_fp = embedding_fp
        self.embedding = None
        self._random_state = get_random_state(random_state)
github msdslab / automated-systematic-review / asreview / query_strategies / mixed.py View on Github external
new_key = key[len(strategy_1)+1:]
                kwargs_1[new_key] = value
            elif key.starts_with(strategy_2):
                new_key = key[len(strategy_2)+1:]
                kwargs_2[new_key] = value
            else:
                logging.warn(f"Key {key} is being ignored for the mixed "
                             "({strategy_1}, {strategy_2}) query strategy.")

        self.strategy_1 = strategy_1
        self.strategy_2 = strategy_2

        self.query_model1 = get_query_model(strategy_1, **kwargs_1)
        self.query_model2 = get_query_model(strategy_2, **kwargs_2)

        self._random_state = get_random_state(random_state)
        if "random_state" in self.query_model1.default_param:
            self.query_model1 = get_query_model(strategy_1, **kwargs_1,
                                                random_state=self._random_state
                                                )
        if "random_state" in self.query_model2.default_param:
            self.query_model2 = get_query_model(strategy_2, **kwargs_2,
                                                random_state=self._random_state
                                                )
        self.mix_ratio = mix_ratio
github msdslab / automated-systematic-review / asreview / review / factory.py View on Github external
if query_param is not None:
        settings.query_param = query_param
    if balance_param is not None:
        settings.balance_param = balance_param
    if feature_param is not None:
        settings.feature_param = feature_param

    # Check if mode is valid
    if mode in AVAILABLE_REVIEW_CLASSES:
        logging.info(f"Start review in '{mode}' mode.")
    else:
        raise ValueError(f"Unknown mode '{mode}'.")
    logging.debug(settings)

    # Initialize models.
    random_state = get_random_state(seed)
    train_model = get_model(settings.model, **settings.model_param,
                            random_state=random_state)
    query_model = get_query_model(settings.query_strategy,
                                  **settings.query_param,
                                  random_state=random_state)
    balance_model = get_balance_model(settings.balance_strategy,
                                      **settings.balance_param,
                                      random_state=random_state)
    feature_model = get_feature_model(settings.feature_extraction,
                                      **settings.feature_param,
                                      random_state=random_state)

    # LSTM models need embedding matrices.
    if train_model.name.startswith("lstm-"):
        texts = as_data.texts
        train_model.embedding_matrix = feature_model.get_embedding_matrix(
github msdslab / automated-systematic-review / asreview / balance_strategies / double.py View on Github external
def __init__(self, a=2.155, alpha=0.94, b=0.789, beta=1.0,
                 random_state=None):

        super(DoubleBalance, self).__init__()
        self.a = a
        self.alpha = alpha
        self.b = b
        self.beta = beta
        self.fallback_model = SimpleBalance()
        self._random_state = get_random_state(random_state)
github msdslab / automated-systematic-review / asreview / balance_strategies / undersample.py View on Github external
def __init__(self, ratio=1.0, random_state=None):
        """Initialize the undersampling balance strategy.

        Arguments
        ---------
        ratio: double
            Undersampling ratio of the zero's. If for example we set a ratio of
            0.25, we would sample only a quarter of the zeros and all the ones.
        """
        super(UndersampleBalance, self).__init__()
        self.ratio = ratio
        self._random_state = get_random_state(random_state)
github msdslab / automated-systematic-review / asreview / query_strategies / cluster.py View on Github external
Arguments
        ---------
        cluster_size: int
            Size of the clusters to be made. If the size of the clusters is
            smaller than the size of the pool, fall back to max sampling.
        update_interval: int
            Update the clustering every x instances.
        random_state: int, RandomState
            State/seed of the RNG.
        """
        super(ClusterQuery, self).__init__()
        self.cluster_size = cluster_size
        self.update_interval = update_interval
        self.last_update = None
        self.fallback_model = MaxQuery()
        self._random_state = get_random_state(random_state)