How to use the asreview.state.open_state function in asreview

To help you get started, we’ve selected a few asreview examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github msdslab / automated-systematic-review / tests / test_state.py View on Github external
def test_read_json_state():

    state_fp = Path("test", "state_files", "test_1_inst.json")

    with open_state(str(state_fp)) as state:
        assert isinstance(state, JSONState)
github msdslab / automated-systematic-review / tests / test_state.py View on Github external
settings = ASReviewSettings(mode="simulate", model="nb",
                                query_strategy="rand_max",
                                balance_strategy="simple",
                                feature_extraction="tfidf")

    n_records = 6
    n_half = int(n_records/2)
    start_labels = np.full(n_records, np.nan, dtype=np.int)
    labels = np.zeros(n_records, dtype=np.int)
    labels[::2] = np.ones(n_half, dtype=np.int)
    methods = np.full((n_records), "initial")
    methods[2::] = np.full((int(n_records-2)), "random")
    methods[2::2] = np.full((int((n_records-2)/2)), "max")

    with open_state(state_fp) as state:
        state.settings = settings
        state.set_labels(start_labels)
        current_labels = np.copy(start_labels)
        for i in range(n_records):
            query_i = int(i/2)
            proba = None
            if i >= 2 and (i % 2) == 0:
                proba = np.random.rand(n_records)
            state.add_classification([i], [labels[i]], [methods[i]], query_i)
            if proba is not None:
                state.add_proba(np.arange(i+1, n_records), np.arange(i+1),
                                proba, query_i)
            current_labels[i] = labels[i]
            state.set_labels(current_labels)
            check_state(state, i, query_i, labels, methods, proba)
github msdslab / automated-systematic-review / tests / test_state.py View on Github external
def test_read_dict_state():
    with open_state(None) as state:
        assert isinstance(state, DictState)
github msdslab / automated-systematic-review / tests / test_simulate.py View on Github external
if use_granular:
        with open_state(state_file) as state:
            # Two loops of training and classification.
            reviewer.train()
            reviewer.log_probabilities(state)
            query_idx = reviewer.query(1)
            inclusions = reviewer._get_labels(query_idx)
            reviewer.classify(query_idx, inclusions, state)

            reviewer.train()
            reviewer.log_probabilities(state)
            query_idx = reviewer.query(1)
            inclusions = reviewer._get_labels(query_idx)
            reviewer.classify(query_idx, inclusions, state)
    else:
        with open_state(state_file) as state:
            if state_file is None:
                state.set_labels(reviewer.y)
                init_idx, init_labels = reviewer._prior_knowledge()
                reviewer.query_i = 0
                reviewer.train_idx = np.array([], dtype=np.int)
                reviewer.classify(init_idx, init_labels, state,
                                  method="initial")

            reviewer._do_review(state)
            if state_file is None:
                print(state._state_dict)
                check_state(state)

    if state_file is not None:
        with open_state(state_file, read_only=True) as state:
            check_state(state)
github msdslab / automated-systematic-review / tests / test_state.py View on Github external
def test_read_hdf5_state():
    state_fp = Path("test", "state_files", "test_1_inst.h5")
    with open_state(str(state_fp)) as state:
        assert isinstance(state, HDF5State)
github msdslab / automated-systematic-review / tests / test_simulate.py View on Github external
with open_state(state_file) as state:
            if state_file is None:
                state.set_labels(reviewer.y)
                init_idx, init_labels = reviewer._prior_knowledge()
                reviewer.query_i = 0
                reviewer.train_idx = np.array([], dtype=np.int)
                reviewer.classify(init_idx, init_labels, state,
                                  method="initial")

            reviewer._do_review(state)
            if state_file is None:
                print(state._state_dict)
                check_state(state)

    if state_file is not None:
        with open_state(state_file, read_only=True) as state:
            check_state(state)
github msdslab / automated-systematic-review / tests / test_simulate.py View on Github external
if not continue_from_state:
        try:
            if state_file is not None:
                os.unlink(state_file)
        except OSError:
            pass

    if monkeypatch is not None:
        monkeypatch.setattr('builtins.input', lambda _: "0")
    # start the review process.
    reviewer = get_reviewer(data_fp, mode=mode, embedding_fp=embedding_fp,
                            prior_idx=[1, 2, 3, 4],
                            state_file=state_file,
                            **kwargs)
    if use_granular:
        with open_state(state_file) as state:
            # Two loops of training and classification.
            reviewer.train()
            reviewer.log_probabilities(state)
            query_idx = reviewer.query(1)
            inclusions = reviewer._get_labels(query_idx)
            reviewer.classify(query_idx, inclusions, state)

            reviewer.train()
            reviewer.log_probabilities(state)
            query_idx = reviewer.query(1)
            inclusions = reviewer._get_labels(query_idx)
            reviewer.classify(query_idx, inclusions, state)
    else:
        with open_state(state_file) as state:
            if state_file is None:
                state.set_labels(reviewer.y)