Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
if use_granular:
with Logger.from_file(log_file) as logger:
# Two loops of training and classification.
reviewer.train()
reviewer.log_probabilities(logger)
query_idx = reviewer.query(1)
inclusions = reviewer._get_labels(query_idx)
reviewer.classify(query_idx, inclusions, logger)
reviewer.train()
reviewer.log_probabilities(logger)
query_idx = reviewer.query(1)
inclusions = reviewer._get_labels(query_idx)
reviewer.classify(query_idx, inclusions, logger)
else:
with Logger.from_file(log_file) as logger:
if log_file is None:
logger.set_labels(reviewer.y)
init_idx, init_labels = reviewer._prior_knowledge()
reviewer.query_i = 0
reviewer.train_idx = np.array([], dtype=np.int)
reviewer.classify(init_idx, init_labels, logger, method="initial")
reviewer._do_review(logger)
if log_file is None:
print(logger._log_dict)
check_log(logger)
if log_file is not None:
with Logger.from_file(log_file, read_only=True) as logger:
check_log(logger)
if not continue_from_log:
try:
if log_file is not None:
os.unlink(log_file)
except OSError:
pass
if monkeypatch is not None:
monkeypatch.setattr('builtins.input', lambda _: "0")
# start the review process.
reviewer = get_reviewer(data_fp, mode=mode, embedding_fp=embedding_fp,
prior_included=[1, 3], prior_excluded=[2, 4],
log_file=log_file,
**kwargs)
if use_granular:
with Logger.from_file(log_file) as logger:
# Two loops of training and classification.
reviewer.train()
reviewer.log_probabilities(logger)
query_idx = reviewer.query(1)
inclusions = reviewer._get_labels(query_idx)
reviewer.classify(query_idx, inclusions, logger)
reviewer.train()
reviewer.log_probabilities(logger)
query_idx = reviewer.query(1)
inclusions = reviewer._get_labels(query_idx)
reviewer.classify(query_idx, inclusions, logger)
else:
with Logger.from_file(log_file) as logger:
if log_file is None:
logger.set_labels(reviewer.y)
else:
with Logger.from_file(log_file) as logger:
if log_file is None:
logger.set_labels(reviewer.y)
init_idx, init_labels = reviewer._prior_knowledge()
reviewer.query_i = 0
reviewer.train_idx = np.array([], dtype=np.int)
reviewer.classify(init_idx, init_labels, logger, method="initial")
reviewer._do_review(logger)
if log_file is None:
print(logger._log_dict)
check_log(logger)
if log_file is not None:
with Logger.from_file(log_file, read_only=True) as logger:
check_log(logger)