How to use the quantlib.termstructures.yields.api.FlatForward function in QuantLib

To help you get started, we’ve selected a few QuantLib examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github enthought / pyql / quantlib / mlab / option_pricing.py View on Github external
def _blsimpv(price, spot, strike, risk_free_rate, time,
             option_type='Call', dividend=0.0):

    spot = SimpleQuote(spot)
    daycounter = ActualActual()
    risk_free_ts = FlatForward(today(), risk_free_rate, daycounter)
    dividend_ts = FlatForward(today(), dividend, daycounter)
    volatility_ts = BlackConstantVol(today(), NullCalendar(),
                                     .3, daycounter)

    process = BlackScholesMertonProcess(spot, dividend_ts,
                                        risk_free_ts, volatility_ts)

    exercise_date = today() + Period(time * 365, Days)
    exercise = EuropeanExercise(exercise_date)

    payoff = PlainVanillaPayoff(option_type, strike)

    option = EuropeanOption(payoff, exercise)
    engine = AnalyticEuropeanEngine(process)
    option.set_pricing_engine(engine)

    accuracy = 0.001
github enthought / pyql / quantlib / mlab / option_pricing.py View on Github external
def _blsprice(spot, strike, risk_free_rate, time, volatility,
             option_type='Call', dividend=0.0, calc='price'):
    """
    Black-Scholes option pricing model + greeks.
    """
    _spot = SimpleQuote(spot)

    daycounter = ActualActual(ISMA)
    risk_free_ts = FlatForward(today(), risk_free_rate, daycounter)
    dividend_ts = FlatForward(today(), dividend, daycounter)
    volatility_ts = BlackConstantVol(today(), NullCalendar(),
                                     volatility, daycounter)

    process = BlackScholesMertonProcess(_spot, dividend_ts,
                                        risk_free_ts, volatility_ts)

    exercise_date = today() + Period(time * 365, Days)
    exercise = EuropeanExercise(exercise_date)

    payoff = PlainVanillaPayoff(option_type, strike)

    option = EuropeanOption(payoff, exercise)
    engine = AnalyticEuropeanEngine(process)
    option.set_pricing_engine(engine)

    if calc == 'price':
github enthought / pyql / quantlib / mlab / option_pricing.py View on Github external
def _blsprice(spot, strike, risk_free_rate, time, volatility,
             option_type='Call', dividend=0.0, calc='price'):
    """
    Black-Scholes option pricing model + greeks.
    """
    _spot = SimpleQuote(spot)

    daycounter = ActualActual(ISMA)
    risk_free_ts = FlatForward(today(), risk_free_rate, daycounter)
    dividend_ts = FlatForward(today(), dividend, daycounter)
    volatility_ts = BlackConstantVol(today(), NullCalendar(),
                                     volatility, daycounter)

    process = BlackScholesMertonProcess(_spot, dividend_ts,
                                        risk_free_ts, volatility_ts)

    exercise_date = today() + Period(time * 365, Days)
    exercise = EuropeanExercise(exercise_date)

    payoff = PlainVanillaPayoff(option_type, strike)

    option = EuropeanOption(payoff, exercise)
    engine = AnalyticEuropeanEngine(process)
    option.set_pricing_engine(engine)
github enthought / pyql / examples / cds.py View on Github external
if __name__ == '__main__':

    #*********************
    #***  MARKET DATA  ***
    #*********************
    calendar = TARGET()

    todays_date = Date(15, May, 2007)
    # must be a business day
    todays_date = calendar.adjust(todays_date)

    Settings.instance().evaluation_date = todays_date

    # dummy curve
    ts_curve = FlatForward(
        reference_date=todays_date, forward=0.01, daycounter=Actual365Fixed()
    )

    # In Lehmans Brothers "guide to exotic credit derivatives"
    # p. 32 there's a simple case, zero flat curve with a flat CDS
    # curve with constant market spreads of 150 bp and RR = 50%
    # corresponds to a flat 3% hazard rate. The implied 1-year
    # survival probability is 97.04% and the 2-years is 94.18%

    # market
    recovery_rate = 0.5
    quoted_spreads = [0.0150, 0.0150, 0.0150, 0.0150 ]
    tenors = [Period(i, Months) for i in [3, 6, 12, 24]]
    maturities = [
        calendar.adjust(todays_date + tenors[i], Following) for i in range(4)
    ]
github enthought / pyql / quantlib / util / rates.py View on Github external
def flat_rate(forward, daycounter):
    """
    Create a flat yield curve, with rate defined according
    to the specified day-count convention.
    Used mostly for unit tests and simple illustrations.
    """

    return FlatForward(
        forward=SimpleQuote(forward),
        settlement_days=0,
        calendar=NullCalendar(),
        daycounter=daycounter
    )
github enthought / pyql / examples / american_option.py View on Github external
forward=0.06,
        daycounter=Actual365Fixed()
    )

    # option parameters
    exercise = AmericanExercise(
        earliest_exercise_date=settlement_date,
        latest_exercise_date=Date(17, May, 1999)
    )
    payoff = PlainVanillaPayoff(Put, 40.0)

    # market data
    underlying = SimpleQuote(36.0)
    volatility = BlackConstantVol(todays_date, TARGET(), 0.20,
                                  Actual365Fixed())
    dividend_yield = FlatForward(
        reference_date=settlement_date,
        forward=0.00,
        daycounter=Actual365Fixed()
    )

    # report
    header = '%19s' % 'method' + ' |' + \
        ' |'.join(['%17s' % tag for tag in ['value',
                                            'estimated error',
                                            'actual error']])
    print()
    print(header)
    print('-' * len(header))

    refValue = None
github enthought / pyql / examples / settings_with_QL_error.py View on Github external
from quantlib.termstructures.yields.api import FlatForward
from quantlib.time.api import Actual360, Date, NullCalendar, TARGET


logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

calendar = TARGET()

date_today      = Date(6,9,2011)
date_payment    = Date(6,12,2000)
settlement_days = 2

quote = SimpleQuote(value=0.03)

term_structure = FlatForward(
    settlement_days = settlement_days,
    quote           = quote,
    calendar        = NullCalendar(),
    daycounter      = Actual360()
)

try:
    df_1 = term_structure.discount(date_payment)
    print('rate: %f df_1: %f' % (quote.value, df_1))
except RuntimeError as exc:
    logger.error('Evaluation date and discount date issue.')
    logger.exception(exc)
github enthought / pyql / quantlib / mlab / fixed_income.py View on Github external
bond = FixedRateBond(
                settlement_days,
                face_amount,
                fixed_bond_schedule,
                [coupon_rate],
                cnt,
                Following,
                redemption,
                issue_date
    )

    discounting_term_structure = YieldTermStructure(relinkable=True)

    cnt_yield = DayCounter.from_name('Actual/Actual (Historical)')

    flat_term_structure = FlatForward(
        settlement_days=2,
        forward=bond_yield,
        calendar=NullCalendar(),
        daycounter=cnt_yield,
        compounding=Compounded,
        frequency=_period)

    discounting_term_structure.link_to(flat_term_structure)

    engine = DiscountingBondEngine(discounting_term_structure)

    bond.set_pricing_engine(engine)

    price = bond.clean_price
    ac = bond.accrued_amount(pydate_to_qldate(settlement_date))
github enthought / pyql / examples / bonds.py View on Github external
)

issue_date = effective_date
bond = FixedRateBond(
    settlement_days,
    face_amount,
    fixed_bond_schedule,
    [coupon_rate],
    ActualActual(ISMA),
    Following,
    redemption,
    issue_date
)

discounting_term_structure = YieldTermStructure(relinkable=True)
flat_term_structure = FlatForward(
    settlement_days = 1,
    forward         = 0.044,
    calendar        = NullCalendar(),
    daycounter      = Actual365Fixed(),
    compounding     = Continuous,
    frequency       = Annual)
discounting_term_structure.link_to(flat_term_structure)
pricing_engine = DiscountingBondEngine(discounting_term_structure)
bond.set_pricing_engine(pricing_engine)


print('Settlement date: ', bond.settlement_date())
print('Maturity date:', bond.maturity_date)
print('Accrued amount: ', bond.accrued_amount(bond.settlement_date()))
print('Clean price:', bond.clean_price)