Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
it("should make test number 53", function () {
// import the modules
var fs = require('qminer').fs;
var la = require('qminer').la;
// create a new sparse matrix
var mat = new la.SparseMatrix([[[0, 1]], [[0, 3], [1, 12]]]);
// open write stream
var fout = fs.openWrite('mat.dat');
// save matrix and close write stream
mat.save(fout).close();
});
});
it("should make test number 31", function () {
// import modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
// create the Sigmoid model
var s = new analytics.Sigmoid();
// create the predicted values and the binary labels
var X = new la.Vector([-3, -2, -1, 1, 2, 3]);
var y = new la.Vector([-1, -1, -1, 1, 1, 1]);
// fit the model
s.fit(X, y);
// create an output stream object and save the model
var fout = fs.openWrite('sigmoid_example.bin');
s.save(fout);
fout.close();
// create a new Sigmoid model by loading the model
var fin = fs.openRead('sigmoid_example.bin');
var s2 = new analytics.Sigmoid(fin);
});
});
it("should make test number 13", function () {
// import the modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
// create a new SVR object
var SVR = new analytics.SVR({ c: 10 });
// create a matrix and vector for the model
var matrix = new la.Matrix([[1, -1], [1, 1]]);
var vector = new la.Vector([1, 1]);
// create the model by fitting the values
SVR.fit(matrix, vector);
// save the model in a binary file
var fout = fs.openWrite('svr_example.bin');
SVR.save(fout);
fout.close();
// construct a SVR model by loading from the binary file
var fin = fs.openRead('svr_example.bin');
var SVR2 = new analytics.SVR()
});
});
it("should make test number 35", function () {
// import modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
// create a new NearestNeighborAD object
var neighbor = new analytics.NearestNeighborAD();
// create a new sparse matrix
var matrix = new la.SparseMatrix([[[0, 1], [1, 2]], [[0, -2], [1, 3]], [[0, 0], [1, 1]]]);
// fit the model with the matrix
neighbor.fit(matrix);
// create an output stream object and save the model
var fout = fs.openWrite('neighbor_example.bin');
neighbor.save(fout);
fout.close();
// create a new Nearest Neighbor Anomaly model by loading the model
var fin = fs.openRead('neighbor_example.bin');
var neighbor2 = new analytics.NearestNeighborAD(fin);
});
});
it("should make test number 96", function () {
// import fs module
var fs = require('qminer').fs;
var la = require('qminer').la;
// create a new vector
var vec = new la.IntVector([1, 2, 3]);
// open write stream
var fout = fs.openWrite('vec.dat');
// save matrix and close write stream
vec.saveascii(fout).close();
});
});
it("should make test number 48", function () {
// import modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
// create the Recursive Linear Regression model
var linreg = new analytics.RecLinReg({ dim: 2.0, recFact: 1e-10 });
// create a new dense matrix and target vector
var mat = new la.Matrix([[1, 2], [1, -1]]);
var vec = new la.Vector([3, 3]);
// fit the model with the matrix
linreg.fit(mat, vec);
// create an output stream object and save the model
var fout = fs.openWrite('linreg_example.bin');
linreg.save(fout);
fout.close();
// create a new Nearest Neighbor Anomaly model by loading the model
var fin = fs.openRead('linreg_example.bin');
var linreg2 = new analytics.RecLinReg(fin);
});
});
it("should make test number 75", function () {
// import modules
var analytics = require('qminer').analytics;
var fs = require('qminer').fs;
// create a MDS instance
var mds = new analytics.MDS({ iter: 200, MaxStep: 10 });
// create the file output stream
var fout = new fs.openWrite('MDS.bin');
// save the MDS instance
mds.save(fout);
fout.close();
// load the MDS instance
var fin = fs.openRead('MDS.bin');
var mds2 = new analytics.MDS(fin);
});
});
// import modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
// create the Proportional Hazards model
var hazards = new analytics.PropHazards();
// create the input matrix and vector for fitting the model
var mat = new la.Matrix([[1, 0, -1, 0], [0, 1, 0, -1]]);
var vec = new la.Vector([1, 0, -1, -2]);
// if openblas used, fit the model
if (require('qminer').flags.blas) {
hazards.fit(mat, vec);
};
// create an output stream and save the model
var fout = fs.openWrite('hazards_example.bin');
hazards.save(fout);
fout.close();
// create input stream
var fin = fs.openRead('hazards_example.bin');
// create a Proportional Hazards object that loads the model and parameters from input stream
var hazards2 = new analytics.PropHazards(fin);
});
});
console.log(__filename)
var assert = require('assert');
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
var vec = new la.Vector({vals:4});
var mat = new la.Matrix({rows:2, cols:4});
var vec = new la.Vector({vals:4});
var mat = new la.Matrix({rows:2, cols:4});
var x = new la.Vector({vals:2});
var SVC = new analytics.SVC({verbose:false});
SVC.fit(mat,vec);
SVC.save(fs.openWrite('svc.bin')).close();
var y1 = SVC.predict(x);
var SVR = new analytics.SVR({verbose:false});
SVR.fit(mat,vec);
SVR.save(fs.openWrite('svr.bin')).close();
var y1 = SVR.predict(x);
var vec = new la.Vector({vals:4});
var mat = new la.Matrix({rows:2, cols:4});
var vec = new la.Vector({vals:4});
var mat = new la.Matrix({rows:2, cols:4});
var x = new la.Vector({vals:2});
var SVC = new analytics.SVC({verbose:false});
SVC.fit(mat,vec);
SVC.save(fs.openWrite('svc.bin')).close();
var y1 = SVC.predict(x);
var SVR = new analytics.SVR({verbose:false});
SVR.fit(mat,vec);
SVR.save(fs.openWrite('svr.bin')).close();
var y1 = SVR.predict(x);