Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
// create a new SVC object
var SVC = new analytics.SVC();
// create the matrix containing the input features and the input vector for each matrix column.
var matrix = new la.Matrix([[1, 0, -1, 0], [0, 1, 0, -1]]);
var vec = new la.Vector([1, 0, -1, -2]);
// fit the model
SVC.fit(matrix, vec);
// create output stream
var fout = fs.openWrite('svc_example.bin');
// save SVC object (model and parameters) to output stream and close it
SVC.save(fout);
fout.close();
// create input stream
var fin = fs.openRead('svc_example.bin');
// create a SVC object that loads the model and parameters from input stream
var SVC2 = new analytics.SVC(fin);
});
});
it("should make test number 9", function () {
// import the analytics and la modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
// create a new SVC object
var SVC = new analytics.SVC();
// create the matrix containing the input features and the input vector for each matrix.
var matrix = new la.Matrix([[1, 0, -1, 0], [0, 1, 0, -1]]);
var vec = new la.Vector([1, 1, -1, -1]);
// fit the model
SVC.fit(matrix, vec); // creates a model, where the hyperplane has the normal semi-equal to [1, 1]
});
});
it("should make test number 2", function () {
// import modules
var la = require('qminer').la;
var analytics = require('qminer').analytics;
// CLASSIFICATION WITH SVC
// set up fake train and test data
// four training examples with number of features = 2
var featureMatrix = new la.Matrix({ rows: 2, cols: 4, random: true });
// classification targets for four examples
var targets = new la.Vector([-1, -1, 1, 1]);
// set up the classification model
var SVC = new analytics.SVC({ verbose: false });
// train classifier
SVC.fit(featureMatrix, targets);
// set up a fake test vector
var test = new la.Vector([1.1, -0.5]);
// predict the target value
var prediction = SVC.predict(test);
});
});
it("should make test number 77", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create a SVC model
var SVC = new analytics.SVC();
// get the properties of the model
var model = SVC.getModel(); // returns { weight: new require('qminer').la.Vector(); }
});
});
it("should make test number 3", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create a new SVC model with json
var SVC = new analytics.SVC({ c: 5, j: 10, batchSize: 2000, maxIterations: 12000, maxTime: 2, minDiff: 1e-10, verbose: true });
// get the parameters of the SVC model
// returns { algorithm: 'SGD' c: 5, j: 10, batchSize: 2000, maxIterations: 12000, maxTime: 2, minDiff: 1e-10, verbose: true }
var json = SVC.getParams();
});
});
it("should make test number 6", function () {
// import the analytics and la modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
// create a new SVC object
var SVC = new analytics.SVC();
// create the matrix containing the input features and the input vector for each matrix column.
var matrix = new la.Matrix([[1, 0, -1, 0], [0, 1, 0, -1]]);
var vec = new la.Vector([1, 0, -1, -2]);
// fit the model
SVC.fit(matrix, vec);
// create output stream
var fout = fs.openWrite('svc_example.bin');
// save SVC object (model and parameters) to output stream and close it
SVC.save(fout);
fout.close();
// create input stream
var fin = fs.openRead('svc_example.bin');
// create a SVC object that loads the model and parameters from input stream
var SVC2 = new analytics.SVC(fin);
});
it("should make test number 4", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create a default SVC model
var SVC = new analytics.SVC();
// change the parameters of the SVC with the json { j: 5, maxIterations: 12000, minDIff: 1e-10 }
SVC.setParams({ j: 5, maxIterations: 12000, minDiff: 1e-10 }); // returns self
});
});
it("should make test number 7", function () {
// import the analytics and la modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
// create a new SVC object
var SVC = new analytics.SVC();
// create the matrix containing the input features and the input vector for each matrix
var matrix = new la.Matrix([[1, 0], [0, -1]]);
var vec = new la.Vector([1, -1]);
// fit the model
SVC.fit(matrix, vec);
// create the vector you want to get the distance from the model
var vec2 = new la.Vector([2, 3]);
// use the decisionFunction to get the distance of vec2 from the model
var distance = SVC.decisionFunction(vec2); // returns something close to 5
});
});
it("should make test number 5", function () {
// import the analytics and la modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
// create a new SVC object
var SVC = new analytics.SVC();
// create the matrix containing the input features and the input vector for each matrix.
var matrix = new la.Matrix([[1, 0, -1, 0], [0, 1, 0, -1]]);
var vec = new la.Vector([1, 1, -1, -1]);
// fit the model
SVC.fit(matrix, vec);
// get the weights
var weights = SVC.weights; // returns the coefficients of the normal vector of the hyperplane gained from the model: [1, 1]
});
});
*/
console.log(__filename)
var assert = require('assert');
var analytics = require('qminer').analytics;
var la = require('qminer').la;
var fs = require('qminer').fs;
var vec = new la.Vector({vals:4});
var mat = new la.Matrix({rows:2, cols:4});
var vec = new la.Vector({vals:4});
var mat = new la.Matrix({rows:2, cols:4});
var x = new la.Vector({vals:2});
var SVC = new analytics.SVC({verbose:false});
SVC.fit(mat,vec);
SVC.save(fs.openWrite('svc.bin')).close();
var y1 = SVC.predict(x);
var SVR = new analytics.SVR({verbose:false});
SVR.fit(mat,vec);
SVR.save(fs.openWrite('svr.bin')).close();
var y1 = SVR.predict(x);