Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
it("should make test number 110", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create a new KMeans object
var KMeans = new analytics.KMeans({ iter: 1000, k: 3 });
// create a matrix to be fitted
var X = new la.Matrix([[1, -2, -1], [1, 1, -3]]);
// create the model with the matrix X
KMeans.fit(X);
});
});
it("should make test number 46", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create a new Recursive Linear Regression model
var linreg = new analytics.RecLinReg({ dim: 10 });
// set the parameters of the model
linreg.setParams({ dim: 3, recFact: 1e2, forgetFact: 0.5 });
});
});
it("should make test number 72", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create a MDS instance
var mds = new analytics.MDS();
// get the (default) parameters of the instance
// returns { maxStep: 5000, maxSecs: 300, minDiff: 1e-4, distType: "Euclid" }
var params = mds.getParams();
});
});
/**
* Copyright (c) 2015, Jozef Stefan Institute, Quintelligence d.o.o. and contributors
* All rights reserved.
*
* This source code is licensed under the FreeBSD license found in the
* LICENSE file in the root directory of this source tree.
*/
var assert = require('../../src/nodejs/scripts/assert.js');
var qm = require('qminer');
var analytics = qm.analytics;
describe('Classification Metrics Tests', function () {
describe('Constructor Tests', function () {
it('should not throw an exception', function () {
assert.doesNotThrow(function () {
// ClassificationScore constructor tests
new analytics.metrics.ClassificationScore();
new analytics.metrics.ClassificationScore([1, 0], [0, 1]);
new analytics.metrics.ClassificationScore(new qm.la.Vector([1, 0]), new qm.la.Vector([0, 1]));
// PredictionCurve constructor tests
new analytics.metrics.PredictionCurve();
new analytics.metrics.PredictionCurve([1, 0], [0, 1]);
new analytics.metrics.PredictionCurve(new qm.la.Vector([1, 0]), new qm.la.Vector([0, 1]));
});
});
it("should make test number 91", function () {
// import metrics module
var metrics = require('qminer').analytics.metrics;
// true and predicted lables
var true_lables = [0, 1, 0, 0, 1];
var pred_prob = [0.3, 0.5, 0.2, 0.5, 0.8];
// create predictionCurve instance
var predictionCurve = new metrics.PredictionCurve();
// simulate data flow
for (var i in true_lables) {
// push new value
predictionCurve.push(true_lables[i], pred_prob[i]);
}
var roc = predictionCurve.roc(); // get ROC
var auc = predictionCurve.auc(); // get AUC
it("should make test number 27", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create the Sigmoid model
var s = new analytics.Sigmoid();
// get the model parameters
// returns a Json object { A: 0, B: 0 }
var model = s.getModel();
});
});
///////////////////////////////////////////////////////////
// One vs All Unit Tests
var assert = require('../../src/nodejs/scripts/assert.js');
var analytics = require('qminer').analytics;
var la = require('qminer').la;
describe('OneVsAll Tests', function () {
describe('Constructor Tests', function () {
it('should not throw an exception', function () {
var json = { c: 10, maxTime: 12000 };
assert.doesNotThrow(function () {
var onevsall = new analytics.OneVsAll({ model: analytics.SVC, modelParam: json, cats: 10 });
});
})
it('should throw an exception if there are missing crucial parameters', function () {
assert.throws(function () {
var onevsall = new analytics.OneVsAll();
});
})
it("should make test number 51", function () {
// import analytics module
var analytics = require('qminer').analytics;
// create a logistic regression model
var logreg = new analytics.LogReg({ lambda: 10 });
// set the parameters of the model
logreg.setParams({ lambda: 1 });
});
});
it("should make test number 63", function () {
// import modules
var analytics = require('qminer').analytics;
var la = require('qminer').la;
// create a Neural Networks model
var nnet = new analytics.NNet({ layout: [2, 3, 4] });
// create the matrices for the fitting of the model
var matIn = new la.Matrix([[1, 0], [0, 1]]);
var matOut = new la.Matrix([[1, 1], [1, 2], [-1, 8], [-3, -3]]);
// fit the model
nnet.fit(matIn, matOut);
});
});
/**
* Copyright (c) 2015, Jozef Stefan Institute, Quintelligence d.o.o. and contributors
* All rights reserved.
*
* This source code is licensed under the FreeBSD license found in the
* LICENSE file in the root directory of this source tree.
*/
console.log(__filename)
var qm = require('qminer');
var fs = qm.fs;
var assert = require('assert');
var analytics = qm.analytics;
var la = qm.la;
console.log("Regression", "Starting test based on a random sample");
var dims = 10; // dimensions
var examples = 500; // examples
var X = la.randn(dims, examples);
var w = la.randn(dims);
var y = X.multiplyT(w);
// gaussian noise
var noiseSigma = 0.1;
var Ng = la.randn(dims, examples).multiply(noiseSigma);
var Xg = X.plus(Ng);
var yg = Xg.multiplyT(w);