Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_integration_coef(self):
"""
Integration test of visualizer with coef param
"""
# Load the test dataset
dataset = load_concrete(return_dataset=True)
X, y = dataset.to_numpy()
features = dataset.meta["features"]
fig = plt.figure()
ax = fig.add_subplot()
reg = Lasso(random_state=42)
features = list(map(lambda s: s.title(), features))
viz = FeatureImportances(reg, ax=ax, labels=features, relative=False)
viz.fit(X, y)
viz.finalize()
# Appveyor and Linux conda non-text-based differences
self.assert_images_similar(viz, tol=16.2)
def test_numpy_integration(self):
"""
Test on concrete dataset with numpy arrays
"""
data = load_concrete(return_dataset=True)
X, y = data.to_numpy()
assert isinstance(X, np.ndarray)
assert isinstance(y, np.ndarray)
_, ax = plt.subplots()
viz = CooksDistance(ax=ax).fit(X, y)
assert_fitted(viz)
assert viz.distance_.sum() == pytest.approx(1.2911900571300652)
assert viz.p_values_.sum() == pytest.approx(1029.9999525376425)
assert viz.influence_threshold_ == pytest.approx(0.003883495145631068)
assert viz.outlier_percentage_ == pytest.approx(7.3786407766990285)
viz.finalize()
self.assert_images_similar(viz)
def peplot():
X, y = load_concrete()
X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2)
oz = PredictionError(Lasso(), ax=newfig())
oz.fit(X_train, y_train)
oz.score(X_test, y_test)
savefig(oz, "prediction_error")
algorithm, dataset, e
)
)
continue
# Break here!
return
# Create single example
_, ax = plt.subplots(figsize=(9, 6))
oz = Manifold(ax=ax, manifold=manifold, **kwargs)
if dataset == "occupancy":
X, y = load_occupancy()
elif dataset == "concrete":
X, y = load_concrete()
else:
raise Exception("unknown dataset '{}'".format(dataset))
oz.fit(X, y)
oz.show(outpath=path)
def binning():
_, y = load_concrete()
oz = BalancedBinningReference(ax=newfig())
oz.fit(y)
savefig(oz, "balanced_binning_reference")
def alpha_selection(ax=None):
data = load_concrete(return_dataset=True)
X, y = data.to_pandas()
alphas = np.logspace(-10, 1, 400)
viz = AlphaSelection(LassoCV(alphas=alphas), ax=ax)
return tts_plot(viz, X, y)
def manifold(dataset, manifold):
if dataset == "concrete":
X, y = load_concrete()
elif dataset == "occupancy":
X, y = load_occupancy()
else:
raise ValueError("unknown dataset")
oz = Manifold(manifold=manifold, ax=newfig())
oz.fit_transform(X, y)
savefig(oz, "{}_{}_manifold".format(dataset, manifold))
def residuals_plot(ax=None):
data = load_concrete(return_dataset=True)
X, y = data.to_pandas()
viz = ResidualsPlot(Ridge(), ax=ax)
return tts_plot(viz, X, y)