Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def test_keras_log_weights(dummy_model, dummy_data, wandb_init_run):
dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data,
callbacks=[WandbCallback(data_type="image", log_weights=True)])
assert wandb_init_run.history.rows[0]['parameters/dense.weights']['_type'] == "histogram"
def test_keras_image_multiclass(dummy_model, dummy_data, wandb_init_run):
dummy_model.fit(*dummy_data, epochs=2, batch_size=36, validation_data=dummy_data,
callbacks=[WandbCallback(data_type="image", predictions=10)])
assert len(wandb_init_run.history.rows[0]["examples"]['captions']) == 10
base_model = VGG16(include_top=False, weights='imagenet')
indices = np.random.randint(val_data.shape[0], size=36)
test_data = val_data[indices]
features = base_model.predict(np.array([preprocess_input(data) for data in test_data]))
pred_data = model.predict(features)
wandb.log({
"examples": [
wandb.Image(test_data[i], caption="cat" if pred_data[i] < 0.5 else "dog")
for i, data in enumerate(test_data)]
}, commit=False)
model.fit(X_train, y_train,
epochs=config.epochs,
batch_size=config.batch_size,
validation_data=(X_test, y_test),
callbacks=[Images(), WandbCallback(save_model=False)])
model.save_weights(top_model_weights_path)
def train(model, network_input, network_output):
""" train the neural network """
filepath = "mozart.hdf5"
checkpoint = ModelCheckpoint(
filepath,
monitor='loss',
verbose=0,
save_best_only=True,
mode='min'
)
callbacks_list = [Midi(), wandb.keras.WandbCallback(), checkpoint]
model.fit(network_input, network_output, epochs=200,
batch_size=128, callbacks=callbacks_list)
# create model
model=Sequential()
model.add(Flatten(input_shape=(img_width,img_height)))
model.add(Dropout(0.4))
model.add(Dense(config.hidden_nodes, activation='relu'))
model.add(Dropout(0.4))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=config.optimizer,
metrics=['accuracy'])
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test),
epochs=config.epochs,
callbacks=[WandbCallback(data_type="image", labels=labels)])
train_faces /= 255.
val_faces /= 255.
# Define the model here, CHANGEME
model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dense(num_classes, activation="softmax"))
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
# log the number of total parameters
config.total_params = model.count_params()
model.fit(train_faces, train_emotions, batch_size=config.batch_size,
epochs=config.num_epochs, verbose=1, callbacks=[
Perf(val_faces),
WandbCallback(data_type="image", labels=[
"Angry", "Disgust", "Fear", "Happy", "Sad", "Surprise", "Neutral"])
], validation_data=(val_faces, val_emotions))
# save the model
model.save("emotion.h5")
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
labels = range(10)
num_classes = y_train.shape[1]
# create model
model=Sequential()
model.add(Flatten(input_shape=(img_width,img_height)))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss='mse', optimizer='adam',
metrics=['accuracy'])
# Fit the model
model.fit(X_train, y_train, epochs=config.epochs, validation_data=(X_test, y_test),
callbacks=[WandbCallback(labels=labels, data_type="image")])
is_five_test = y_test == 5
labels = ["Not Five", "Is Five"]
img_width = X_train.shape[1]
img_height = X_train.shape[2]
# create model
model=Sequential()
model.add(Flatten(input_shape=(img_width,img_height)))
model.add(Dense(1))
model.compile(loss='mse', optimizer='adam',
metrics=['accuracy'])
# Fit the model
model.fit(X_train, is_five_train, epochs=config.epochs, validation_data=(X_test, is_five_test),
callbacks=[WandbCallback(labels=labels, data_type="image")])
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Flatten())
model.add(Dense(num_classes))
model.compile(loss='mse',
optimizer=Adam(config.learn_rate),
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=10, batch_size=128, validation_data=(X_test, y_test),
callbacks=[WandbCallback(data_type="image", labels=class_names)])
# setup model
base_model = InceptionV3(weights='imagenet', include_top=False) #include_top=False excludes final FC layer
model = add_new_last_layer(base_model, nb_classes)
model._is_graph_network = False
# fine-tuning
setup_to_finetune(model)
model.fit_generator(
train_generator,
epochs=config.epochs,
workers=2,
steps_per_epoch=nb_train_samples * 2 / config.batch_size,
validation_data=validation_generator,
validation_steps=nb_train_samples / config.batch_size,
callbacks=[WandbCallback(data_type="image", generator=validation_generator, labels=['cat', 'dog'],save_model=False)],
class_weight='auto')
model.save('transfered.h5')