Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def update_current_task(task, **kwargs):
PatchModelCheckPointCallback.defaults_dict.update(kwargs)
PatchModelCheckPointCallback.__main_task = task
# make sure we patched the SummaryToEventTransformer
PatchModelCheckPointCallback._patch_model_checkpoint()
PostImportHookPatching.add_on_import('keras', PatchModelCheckPointCallback._patch_model_checkpoint)
PostImportHookPatching.add_on_import('tensorflow', PatchModelCheckPointCallback._patch_model_checkpoint)
def patch_joblib():
# try manually
PatchedJoblib._patch_joblib()
# register callback
PostImportHookPatching.add_on_import('joblib',
PatchedJoblib._patch_joblib)
PostImportHookPatching.add_on_import('sklearn',
PatchedJoblib._patch_joblib)
def update_current_task(task, **kwargs):
PatchKerasModelIO.__main_task = task
PatchKerasModelIO._patch_model_checkpoint()
PostImportHookPatching.add_on_import('tensorflow', PatchKerasModelIO._patch_model_checkpoint)
PostImportHookPatching.add_on_import('keras', PatchKerasModelIO._patch_model_checkpoint)
def update_current_task(task, **kwargs):
PatchXGBoostModelIO.__main_task = task
PatchXGBoostModelIO._patch_model_io()
PostImportHookPatching.add_on_import('xgboost', PatchXGBoostModelIO._patch_model_io)
def update_current_task(task, **kwargs):
PatchTensorFlowEager.defaults_dict.update(kwargs)
PatchTensorFlowEager.__main_task = task
# make sure we patched the SummaryToEventTransformer
PatchTensorFlowEager._patch_model_checkpoint()
PostImportHookPatching.add_on_import('tensorflow', PatchTensorFlowEager._patch_model_checkpoint)
def update_current_task(task, **kwargs):
PatchKerasModelIO.__main_task = task
PatchKerasModelIO._patch_model_checkpoint()
PostImportHookPatching.add_on_import('tensorflow', PatchKerasModelIO._patch_model_checkpoint)
PostImportHookPatching.add_on_import('keras', PatchKerasModelIO._patch_model_checkpoint)
def update_current_task(task, **kwargs):
PatchTensorflowModelIO.__main_task = task
PatchTensorflowModelIO._patch_model_checkpoint()
PostImportHookPatching.add_on_import('tensorflow', PatchTensorflowModelIO._patch_model_checkpoint)
def update_current_task(task):
# make sure we have a default value
if PatchedMatplotlib._global_image_counter_limit is None:
from ..config import config
PatchedMatplotlib._global_image_counter_limit = config.get('metric.matplotlib_untitled_history_size', 100)
# if we already patched it, just update the current task
if PatchedMatplotlib._patched_original_plot is not None:
PatchedMatplotlib._current_task = task
# if matplotlib is not loaded yet, get a callback hook
elif not running_remotely() and 'matplotlib.pyplot' not in sys.modules:
PatchedMatplotlib._current_task = task
PostImportHookPatching.add_on_import('matplotlib.pyplot', PatchedMatplotlib.patch_matplotlib)
elif PatchedMatplotlib.patch_matplotlib():
PatchedMatplotlib._current_task = task
def update_current_task(task, **kwargs):
PatchSummaryToEventTransformer.defaults_dict.update(kwargs)
PatchSummaryToEventTransformer.__main_task = task
# make sure we patched the SummaryToEventTransformer
PatchSummaryToEventTransformer._patch_summary_to_event_transformer()
PostImportHookPatching.add_on_import('tensorflow',
PatchSummaryToEventTransformer._patch_summary_to_event_transformer)
PostImportHookPatching.add_on_import('torch',
PatchSummaryToEventTransformer._patch_summary_to_event_transformer)
PostImportHookPatching.add_on_import('tensorboardX',
PatchSummaryToEventTransformer._patch_summary_to_event_transformer)