Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from trains import Task
tf.compat.v1.enable_eager_execution()
task = Task.init(project_name='examples', task_name='Tensorflow eager mode')
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_integer('data_num', 100, """Flag of type integer""")
tf.app.flags.DEFINE_string('img_path', './img', """Flag of type string""")
layers = tf.keras.layers
FLAGS = None
class Discriminator(tf.keras.Model):
"""GAN Discriminator.
A network to differentiate between generated and real handwritten digits.
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
from trains import Task
task = Task.init(project_name='examples', task_name='pytorch with matplotlib example', task_type=Task.TaskTypes.testing)
######################################################################
# Next, we need to choose which device to run the network on and import the
# content and style images. Running the neural transfer algorithm on large
# images takes longer and will go much faster when running on a GPU. We can
# use ``torch.cuda.is_available()`` to detect if there is a GPU available.
# Next, we set the ``torch.device`` for use throughout the tutorial. Also the ``.to(device)``
# method is used to move tensors or modules to a desired device.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
######################################################################
# Loading the Images
# ------------------
#
# TRAINS - Example of Pytorch mnist training integration
#
from __future__ import print_function
import argparse
import os
from tempfile import gettempdir
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from trains import Task
task = Task.init(project_name='examples', task_name='pytorch mnist train')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4 * 4 * 50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
# TRAINS - Example of Matplotlib and Seaborn integration and reporting
#
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from trains import Task
task = Task.init(project_name='examples', task_name='Matplotlib example')
# create plot
N = 50
x = np.random.rand(N)
y = np.random.rand(N)
colors = np.random.rand(N)
area = (30 * np.random.rand(N))**2 # 0 to 15 point radii
plt.scatter(x, y, s=area, c=colors, alpha=0.5)
plt.show()
# create another plot - with a name
x = np.linspace(0, 10, 30)
y = np.sin(x)
plt.plot(x, y, 'o', color='black')
plt.show()
from time import sleep
import pandas as pd
import numpy as np
from PIL import Image
from trains import Task
task = Task.init('examples', 'artifacts toy')
df = pd.DataFrame({'num_legs': [2, 4, 8, 0],
'num_wings': [2, 0, 0, 0],
'num_specimen_seen': [10, 2, 1, 8]},
index=['falcon', 'dog', 'spider', 'fish'])
# Register Pandas object as artifact to watch
# (it will be monitored in the background and automatically synced and uploaded)
task.register_artifact('train', df, metadata={'counting': 'legs', 'max legs': 69})
# change the artifact object
df.sample(frac=0.5, replace=True, random_state=1)
# or access it from anywhere using the Task's get_registered_artifacts()
Task.current_task().get_registered_artifacts()['train'].sample(frac=0.5, replace=True, random_state=1)
# add and upload pandas.DataFrame (onetime snapshot of the object)
task.upload_artifact('Pandas', artifact_object=df)
# TRAINS - Example of manual model configuration
#
import os
from tempfile import gettempdir
import torch
from trains import Task
task = Task.init(project_name='examples', task_name='Manual model configuration')
# create a model
model = torch.nn.Module
# Connect a local configuration file
config_file = 'samples/sample.json'
config_file = task.connect_configuration(config_file)
# then read configuration as usual, the backend will contain a copy of it.
# later when executing remotely, the returned `config_file` will be a temporary file
# containing a new copy of the configuration retrieved form the backend
# # model_config_dict = json.load(open(config_file, 'rt'))
# Or Store dictionary of definition for a specific network design
model_config_dict = {
'value': 13.37,
'dict': {'sub_value': 'string', 'sub_integer': 11},
try:
import joblib
except ImportError:
from sklearn.externals import joblib
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
from trains import Task
task = Task.init(project_name="examples", task_name="joblib test")
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LogisticRegression(solver='liblinear', multi_class='auto') # sklearn LogisticRegression class
model.fit(X_train, y_train)
joblib.dump(model, 'model.pkl', compress=True)
loaded_model = joblib.load('model.pkl')
result = loaded_model.score(X_test, y_test)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
# model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation('softmax'))
model2 = Sequential()
model2.add(Dense(512, input_shape=(784,)))
model2.add(Activation('relu'))
model.summary()
model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])
# Connecting TRAINS
task = Task.init(project_name='examples', task_name='Keras with TensorBoard example')
task.set_model_config(config_dict={'test': 1337, 'nested': {'key': 'value', 'number': 1}})
# Advanced: setting model class enumeration
labels = dict(('digit_%d' % i, i) for i in range(10))
task.set_model_label_enumeration(labels)
output_folder = os.path.join(tempfile.gettempdir(), 'keras_example')
board = TensorBoard(histogram_freq=1, log_dir=output_folder, write_images=False)
model_store = ModelCheckpoint(filepath=os.path.join(output_folder, 'weight.{epoch}.hdf5'))
# load previous model, if it is there
try:
model.load_weights(os.path.join(output_folder, 'weight.1.hdf5'))
except:
pass
task = Task.init(project_name="examples", task_name="Manual reporting")
# standard python logging
logging.info("This is an info message")
# this is loguru test example
try:
from loguru import logger
logger.info("That's it, beautiful and simple logging! (using ANSI colors)")
except ImportError:
pass
# get TRAINS logger object for any metrics / reports
logger = Task.current_task().get_logger()
# log text
logger.report_text("hello")
# report scalar values
logger.report_scalar("example_scalar", "series A", iteration=0, value=100)
logger.report_scalar("example_scalar", "series A", iteration=1, value=200)
# report histogram
histogram = np.random.randint(10, size=10)
logger.report_histogram("example_histogram", "random histogram", iteration=1, values=histogram,
xaxis="title x", yaxis="title y")
# report confusion matrix
confusion = np.random.randint(10, size=(10, 10))
logger.report_matrix("example_confusion", "ignored", iteration=1, matrix=confusion, xaxis="title X", yaxis="title Y")
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import tempfile
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from trains import Task
FLAGS = None
task = Task.init(project_name='examples', task_name='Tensorflow mnist with summaries example')
def train():
# Import data
mnist = input_data.read_data_sets(FLAGS.data_dir, fake_data=FLAGS.fake_data)
sess = tf.InteractiveSession()
# Create a multilayer model.
# Input placeholders
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.int64, [None], name='y-input')
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])