Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
# Error Ratio #
########################################################
mean_sq_error_ratio = _compute_error_ratio(y1_error, atol=self.atol, rtol=self.rtol, y0=y0, y1=y1)
accept_step = (torch.tensor(mean_sq_error_ratio) <= 1).all()
########################################################
# Update RK State #
########################################################
y_next = y1 if accept_step else y0
f_next = f1 if accept_step else f0
t_next = t0 + dt if accept_step else t0
interp_coeff = _interp_fit_adaptive_heun(y0, y1, k, dt) if accept_step else interp_coeff
dt_next = _optimal_step_size(
dt, mean_sq_error_ratio, safety=self.safety, ifactor=self.ifactor, dfactor=self.dfactor, order=5
)
rk_state = _RungeKuttaState(y_next, f_next, t0, t_next, dt_next, interp_coeff)
return rk_state
def before_integrate(self, t):
f0 = self.func(t[0].type_as(self.y0[0]), self.y0)
if self.first_step is None:
first_step = _select_initial_step(self.func, t[0], self.y0, 4, self.rtol[0], self.atol[0], f0=f0).to(t)
else:
first_step = _convert_to_tensor(0.01, dtype=t.dtype, device=t.device)
self.rk_state = _RungeKuttaState(self.y0, f0, t[0], t[0], first_step, interp_coeff=[self.y0] * 5)
def before_integrate(self, t):
f0 = self.func(t[0].type_as(self.y0[0]), self.y0)
#print("first_step is {}".format(self.first_step))
if self.first_step is None:
first_step = _select_initial_step(self.func, t[0], self.y0, 4, self.rtol[0], self.atol[0], f0=f0).to(t)
else:
first_step = _convert_to_tensor(0.01, dtype=t.dtype, device=t.device)
# if first_step>0.2:
# print("warning the first step of dopri5 {} is too big, set to 0.2".format(first_step))
# first_step = _convert_to_tensor(0.2, dtype=torch.float64, device=self.y0[0].device)
self.rk_state = _RungeKuttaState(self.y0, f0, t[0], t[0], first_step, interp_coeff=[self.y0] * 5)
y_next = y1 if accept_step else y0
f_next = f1 if accept_step else f0
t_next = t0 + dt if accept_step else t0
interp_coeff = _interp_fit_dopri5(y0, y1, k, dt) if accept_step else interp_coeff
else:
if dt_next<0.02:
print("warning the step of dopri5 {} is too small, set to 0.01".format(dt_next))
dt_next = _convert_to_tensor(0.01, dtype=torch.float64, device=y0[0].device)
if dt_next>0.1:
print("warning the step of dopri5 {} is too big, set to 0.1".format(dt_next))
dt_next = _convert_to_tensor(0.1, dtype=torch.float64, device=y0[0].device)
y_next = y1
f_next = f1
t_next = t0 + dt
interp_coeff = _interp_fit_dopri5(y0, y1, k, dt)
rk_state = _RungeKuttaState(y_next, f_next, t0, t_next, dt_next, interp_coeff)
return rk_state