Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def __init__(self, func, y0, step_size=None, grid_constructor=None, **unused_kwargs):
unused_kwargs.pop('rtol', None)
unused_kwargs.pop('atol', None)
_handle_unused_kwargs(self, unused_kwargs)
del unused_kwargs
self.func = func
self.y0 = y0
if step_size is not None and grid_constructor is None:
self.grid_constructor = self._grid_constructor_from_step_size(step_size)
elif grid_constructor is None:
self.grid_constructor = lambda f, y0, t: t
else:
raise ValueError("step_size and grid_constructor are exclusive arguments.")
def __init__(self, func, y0, atol, rtol, **unused_kwargs):
_handle_unused_kwargs(self, unused_kwargs)
del unused_kwargs
self.func = func
self.y0 = y0
self.atol = atol
self.rtol = rtol
def __init__(
self, func, y0, rtol, atol, first_step=None, safety=0.9, ifactor=10.0, dfactor=0.2, max_num_steps=2**31 - 1,
**unused_kwargs
):
_handle_unused_kwargs(self, unused_kwargs)
del unused_kwargs
self.func = func
self.y0 = y0
self.rtol = rtol if _is_iterable(rtol) else [rtol] * len(y0)
self.atol = atol if _is_iterable(atol) else [atol] * len(y0)
self.first_step = first_step
self.safety = _convert_to_tensor(safety, dtype=torch.float64, device=y0[0].device)
self.ifactor = _convert_to_tensor(ifactor, dtype=torch.float64, device=y0[0].device)
self.dfactor = _convert_to_tensor(dfactor, dtype=torch.float64, device=y0[0].device)
self.max_num_steps = _convert_to_tensor(max_num_steps, dtype=torch.int32, device=y0[0].device)
def __init__(
self, func, y0, rtol, atol, first_step=None, safety=0.9, ifactor=10.0, dfactor=0.2, max_num_steps=2**31 - 1,
**unused_kwargs
):
_handle_unused_kwargs(self, unused_kwargs)
del unused_kwargs
self.func = func
self.y0 = y0
self.rtol = rtol if _is_iterable(rtol) else [rtol] * len(y0)
self.atol = atol if _is_iterable(atol) else [atol] * len(y0)
self.first_step = first_step
self.safety = _convert_to_tensor(safety, dtype=torch.float64, device=y0[0].device)
self.ifactor = _convert_to_tensor(ifactor, dtype=torch.float64, device=y0[0].device)
self.dfactor = _convert_to_tensor(dfactor, dtype=torch.float64, device=y0[0].device)
self.max_num_steps = _convert_to_tensor(max_num_steps, dtype=torch.int32, device=y0[0].device)
#self.n_step_record=[]