How to use the tifffile.TiffFile function in tifffile

To help you get started, we’ve selected a few tifffile examples, based on popular ways it is used in public projects.

Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.

github flika-org / flika / tifffile.py View on Github external
test_tifffile(path, settings.verbose)
        return 0

    if any(i in path for i in '?*'):
        path = glob.glob(path)
        if not path:
            print('no files match the pattern')
            return 0
        # TODO: handle image sequences
        #if len(path) == 1:
        path = path[0]

    print("Reading file structure...", end=' ')
    start = time.time()
    try:
        tif = TiffFile(path, multifile=not settings.nomultifile)
    except Exception as e:
        if settings.debug:
            raise
        else:
            print("\n", e)
            sys.exit(0)
    print("%.3f ms" % ((time.time()-start) * 1e3))

    if tif.is_ome:
        settings.norgb = True

    images = [(None, tif[0 if settings.page < 0 else settings.page])]
    if not settings.noplot:
        print("Reading image data... ", end=' ')
        notnone = lambda x: next(i for i in x if i is not None)
        start = time.time()
github pf4d / cslvr / cslvr / datafactory.py View on Github external
:rtype: dict
		"""

		s    = "::: getting 'Bedmap 2' data from DataFactory :::"
		print_text(s, DataFactory.color)

		global home
		direc    = home + '/antarctica/bedmap2/'

		B           = TiffFile(direc + 'bedmap2_bed.tif')
		S           = TiffFile(direc + 'bedmap2_surface.tif')
		H           = TiffFile(direc + 'bedmap2_thickness.tif')
		mask        = TiffFile(direc + 'bedmap2_icemask_grounded_and_shelves.tif')
		rock_mask   = TiffFile(direc + 'bedmap2_rockmask.tif')
		b_uncert    = TiffFile(direc + 'bedmap2_grounded_bed_uncertainty.tif')
		coverage    = TiffFile(direc + 'bedmap2_coverage.tif')
		gl04c_WGS84 = TiffFile(direc + 'gl04c_geiod_to_WGS84.tif')

		B           = B.asarray()
		S           = S.asarray()
		H           = H.asarray()
		mask        = mask.asarray()
		rock_mask   = rock_mask.asarray()
		b_uncert    = b_uncert.asarray()
		coverage    = coverage.asarray()
		gl04c_WGS84 = gl04c_WGS84.asarray()

		# format the mask for cslvr :
		mask[mask == 1]   = 2
		mask[mask == 0]   = 1
		mask[mask == 127] = 0
github fedebarabas / tormenta / tormenta / control / guitools.py View on Github external
def tiff2png(main, filenames=None):

    if filenames is None:
        filenames = utils.getFilenames('Load TIFF files',
                                       [('Tiff files', '.tiff'),
                                        ('Tif files', '.tif')],
                                       main.recWidget.folderEdit.text())

    for filename in filenames:
        with tiff.TiffFile(filename) as tt:
            arr = tt.asarray()
            cmin, cmax = bestLimits(arr)
            arr[arr > cmax] = cmax
            arr[arr < cmin] = cmin
            arr -= arr.min()
            arr = arr/arr.max()

            arr = imresize(arr, (1000, 1000), 'nearest')
            im = Image.fromarray(cm.cubehelix(arr, bytes=True))
            im.save(os.path.splitext(filename)[0] + '.png')
github tlambert03 / LLSpy / llspy / camcalib.py View on Github external
def combine_stacks(ch0, ch1, darkavg):
    """Read tifs into two large stacks ...

    #TODO: see if we do this sequentially to minimize the amount of RAM required
    """
    shp = list(tf.TiffFile(ch0[0]).series[0].shape)
    nZ = shp[0]
    shp[0] *= len(ch0)
    pre = np.zeros(shp, dtype=np.float)
    post = np.zeros(shp, dtype=np.float)
    for n in range(len(ch0)):
        pre[n * nZ : n * nZ + nZ, :, :] = tf.imread(ch0[n]).astype(np.float) - darkavg
        post[n * nZ : n * nZ + nZ, :, :] = tf.imread(ch1[n]).astype(np.float) - darkavg
    return pre, post
github AllenCellModeling / aicsimageio / aicsimageio / readers / tiff_reader.py View on Github external
def dims(self) -> str:
        if self._dims is None:
            # Get a single scenes dimensions in order
            with TiffFile(self._file) as tiff:
                single_scene_dims = tiff.series[0].pages.axes

                # We can sometimes trust the dimension info in the image
                if all([d in Dimensions.DefaultOrder for d in single_scene_dims]):
                    # Add scene dimension only if there are multiple scenes
                    if len(tiff.series) == 1:
                        self._dims = single_scene_dims
                    else:
                        self._dims = f"{Dimensions.Scene}{single_scene_dims}"
                # Sometimes the dimension info is wrong in certain dimensions, so guess
                # that dimension
                else:
                    guess = self.guess_dim_order(tiff.series[0].pages.shape)
                    best_guess = []
                    for dim_from_meta in single_scene_dims:
                        if dim_from_meta in Dimensions.DefaultOrder:
github flika-org / flika / tifffile.py View on Github external
else:
        kwargs_file['multifile'] = True
    kwargs_seq = {}
    if 'pattern' in kwargs:
        kwargs_seq['pattern'] = kwargs['pattern']
        del kwargs['pattern']

    if isinstance(files, basestring) and any(i in files for i in '?*'):
        files = glob.glob(files)
    if not files:
        raise ValueError('no files found')
    if len(files) == 1:
        files = files[0]

    if isinstance(files, basestring):
        with TiffFile(files, **kwargs_file) as tif:
            return tif.asarray(*args, **kwargs)
    else:
        with TiffSequence(files, **kwargs_seq) as imseq:
            return imseq.asarray(*args, **kwargs)
github flika-org / flika / tifffile.py View on Github external
    def __init__(self, files, imread=TiffFile, pattern='axes'):
        """Initialize instance from multiple files.

        Parameters
        ----------
        files : str, or sequence of str
            Glob pattern or sequence of file names.
        imread : function or class
            Image read function or class with asarray function returning numpy
            array from single file.
        pattern : str
            Regular expression pattern that matches axes names and sequence
            indices in file names.

        """
        if isinstance(files, basestring):
            files = natural_sorted(glob.glob(files))
github BGU-CS-VIL / BASS / Global.py View on Github external
potts_area = 25

    Beta_P = torch.from_numpy(np.array([2.7], dtype=np.float)).to(device).float()
    C_prior = 50

    ALPHA_MS = 2675 + 25*add_splits

    ALPHA_MS2 = 0.0001

    LOG_ALPHA_MS2 = -26.2


    global TIF
    if TIF:
        import tifffile
        with tifffile.TiffFile(IMAGE1) as tif:
            h_tif,w_tif = tif.pages[0].asarray().shape
            TIF_C = len(tif.pages)
            frame0 = np.zeros((h_tif,w_tif,TIF_C))
            meta_data = tif.imagej_metadata

            for c in range(len(tif.pages)):
                frame0[:,:,c] = tif.pages[c].asarray()

    else:
        frame0 = np.array(Image.open(IMAGE1).convert('RGB'))
        TIF_C = 3

    HEIGHT, WIDTH, _ = frame0.shape
    dx = np.array([[-1 / 12, 8 / 12, 0, -8 / 12, 1 / 12]])

    """
github macronucleus / Chromagnon / Chromagnon / imgio / multitifIO.py View on Github external
def openFile(self):
        """
        open a file for reading
        """
        self.fp = tifffile.TiffFile(self.fn)
        self.handle = self.fp.filehandle
        
        self.readHeader()
github flatironinstitute / CaImAn / caiman / utils / utils.py View on Github external
def get_image_description_SI(fname:str) -> List:
    """Given a tif file acquired with Scanimage it returns a dictionary containing the information in the image description field

     Args:
         fname: name of the file
     Returns:
        image_description: information of the image
    """

    image_descriptions = []

    tf = TiffFile(fname)

    for idx, pag in enumerate(tf.pages):
        if idx % 1000 == 0:
            logging.debug(idx) # progress report to the user
        field = pag.tags['image_description'].value

        image_descriptions.append(si_parse(field))

    return image_descriptions