Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
data_dir='path_to_test_data'
datanp=[] #images
truenp=[] #labels
for file in os.listdir(data_dir):
data=np.load(os.path.join(data_dir,file))
datanp.append((data[0][0]))
truenp.append(data[0][1])
sh=datanp.shape
tf.reset_default_graph()
net = tflearn.input_data(shape=[None, sh[1], sh[2], sh[3], sh[4]])
net = tflearn.conv_3d(net, 16,5,strides=2,activation='leaky_relu', padding='VALID',weights_init='xavier',regularizer='L2',weight_decay=0.01)
net = tflearn.max_pool_3d(net, kernel_size = 3, strides=2, padding='VALID')
net = tflearn.conv_3d(net, 32,3,strides=2, padding='VALID',weights_init='xavier',regularizer='L2',weight_decay=0.01)
net = tflearn.normalization.batch_normalization(net)
net = tflearn.activations.leaky_relu (net)
net = tflearn.max_pool_3d(net, kernel_size = 2, strides=2, padding='VALID')
net = tflearn.dropout(net,0.5)
net = tflearn.fully_connected(net, 1024,weights_init='xavier',regularizer='L2')
net = tflearn.normalization.batch_normalization(net,gamma=1.1,beta=0.1)
net = tflearn.activations.leaky_relu (net)
net = tflearn.dropout(net,0.6)
net = tflearn.fully_connected(net, 512,weights_init='xavier',regularizer='L2')
net = tflearn.normalization.batch_normalization(net,gamma=1.2,beta=0.2)
net = tflearn.activations.leaky_relu (net)
net = tflearn.dropout(net,0.7)
net = tflearn.fully_connected(net, 128,weights_init='xavier',regularizer='L2')
import tflearn
from tflearn.data_utils import *
path = "US_Cities.txt"
if not os.path.isfile(path):
context = ssl._create_unverified_context()
moves.urllib.request.urlretrieve("https://raw.githubusercontent.com/tflearn/tflearn.github.io/master/resources/US_Cities.txt", path, context=context)
maxlen = 20
string_utf8 = open(path, "r").read().decode('utf-8')
X, Y, char_idx = \
string_to_semi_redundant_sequences(string_utf8, seq_maxlen=maxlen, redun_step=3)
g = tflearn.input_data(shape=[None, maxlen, len(char_idx)])
g = tflearn.lstm(g, 512, return_seq=True)
g = tflearn.dropout(g, 0.5)
g = tflearn.lstm(g, 512)
g = tflearn.dropout(g, 0.5)
g = tflearn.fully_connected(g, len(char_idx), activation='softmax')
g = tflearn.regression(g, optimizer='adam', loss='categorical_crossentropy',
learning_rate=0.001)
m = tflearn.SequenceGenerator(g, dictionary=char_idx,
seq_maxlen=maxlen,
clip_gradients=5.0,
checkpoint_path='model_us_cities')
for i in range(40):
seed = random_sequence_from_string(string_utf8, maxlen)
m.fit(X, Y, validation_set=0.1, batch_size=128,
global max_sys_call
# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=max_sequences_len, value=0.)
testX = pad_sequences(testX, maxlen=max_sequences_len, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY, nb_classes=2)
testY_old=testY
testY = to_categorical(testY, nb_classes=2)
# Network building
print "GET max_sequences_len embedding %d" % max_sequences_len
print "GET max_sys_call embedding %d" % max_sys_call
net = tflearn.input_data([None, max_sequences_len])
net = tflearn.embedding(net, input_dim=max_sys_call+1, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.3)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.1,
loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, tensorboard_verbose=3)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
batch_size=32,run_id="maidou")
y_predict_list = model.predict(testX)
#print y_predict_list
# IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl', n_words=10000,
valid_portion=0.1)
trainX, trainY = train
testX, testY = test
# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=100, value=0.)
testX = pad_sequences(testX, maxlen=100, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY)
# Network building
net = tflearn.input_data([None, 100])
net = tflearn.embedding(net, input_dim=10000, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.8)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy')
# Training
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True,
batch_size=32)
output_row[classes.index(doc[1])] = 1
training.append([bag, output_row])
# shuffle our features and turn into np.array
random.shuffle(training)
training = np.array(training)
# create train and test lists
train_x = list(training[:,0])
train_y = list(training[:,1])
# reset underlying graph data
tf.reset_default_graph()
# Build neural network
net = tflearn.input_data(shape=[None, len(train_x[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(train_y[0]), activation='softmax')
net = tflearn.regression(net)
# Define model and setup tensorboard
model = tflearn.DNN(net, tensorboard_dir='tflearn_logs')
# Start training (apply gradient descent algorithm)
model.fit(train_x, train_y, n_epoch=1000, batch_size=8, show_metric=True)
model.save('model.tflearn')
def clean_up_sentence(sentence):
# tokenize the pattern
sentence_words = nltk.word_tokenize(sentence)
# stem each word
sentence_words = [stemmer.stem(word.lower()) for word in sentence_words]
def initializeCriticNetwork(self):
inputs = tflearn.input_data(shape = [None,self.input_dim])
action = tflearn.input_data(shape = [None,self.output_dim])
net = tflearn.fully_connected(inputs,64)
net = tflearn.layers.normalization.batch_normalization(net)
net = tflearn.activations.relu(net)
temp1 = tflearn.fully_connected(net,64)
temp2 = tflearn.fully_connected(action,64)
net = tflearn.activation(tf.matmul(net,temp1.W)+tf.matmul(action,temp2.W)+temp2.b,activation = 'relu')
w_init = tflearn.initializations.uniform(minval = -0.003,maxval = 0.003)
out = tflearn.fully_connected(net,1,weights_init = w_init)
return inputs,action,out
# Here is an example using the `tflearn` patch
import tflearn
from tensorbuilder import tb
import tensorbuilder.patches.tflearn.patch
model = (
tflearn.input_data(shape=[None, 784]).builder()
.fully_connected(64)
.dropout(0.5)
.fully_connected(10, activation='softmax')
.regression(optimizer='adam', loss='categorical_crossentropy')
.map(tflearn.DNN)
.tensor()
)
print(model)
def construct_firenet (x,y, training=False):
# Build network as per architecture in [Dunnings/Breckon, 2018]
network = tflearn.input_data(shape=[None, y, x, 3], dtype=tf.float32)
network = conv_2d(network, 64, 5, strides=4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 128, 4, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
network = conv_2d(network, 256, 1, activation='relu')
network = max_pool_2d(network, 3, strides=2)
network = local_response_normalization(network)
def createDNNLayers(self, x, y):
net = tflearn.input_data(shape=[None, len(x[0])])
for i in range(self._confs["ClassifierSettings"]['FcLayers']):
net = tflearn.fully_connected(net, self._confs["ClassifierSettings"]['FcUnits'])
net = tflearn.fully_connected(net, len(y[0]), activation=str(self._confs["ClassifierSettings"]['Activation']))
net = tflearn.regression(net)
return net
from scipy.stats import norm
import tensorflow as tf
import tflearn
# Data loading and preprocessing
import tflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
# Params
original_dim = 784 # MNIST images are 28x28 pixels
hidden_dim = 256
latent_dim = 2
# Building the encoder
encoder = tflearn.input_data(shape=[None, 784], name='input_images')
encoder = tflearn.fully_connected(encoder, hidden_dim, activation='relu')
z_mean = tflearn.fully_connected(encoder, latent_dim)
z_std = tflearn.fully_connected(encoder, latent_dim)
# Sampler: Normal (gaussian) random distribution
eps = tf.random_normal(tf.shape(z_std), dtype=tf.float32, mean=0., stddev=1.0,
name='epsilon')
z = z_mean + tf.exp(z_std / 2) * eps
# Building the decoder (with scope to re-use these layers later)
decoder = tflearn.fully_connected(z, hidden_dim, activation='relu',
scope='decoder_h')
decoder = tflearn.fully_connected(decoder, original_dim, activation='sigmoid',
scope='decoder_out')
# Define VAE Loss