Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
def model1():
for c, d in enumerate(uniq_diag[:20]):
# Display the training diagnosis
print("--------------------Training {}--------------------".format(d))
# Run each iteration in a graph
with tf.Graph().as_default():
y = Y[d].astype(np.float32)
y = y.reshape(-1, 1)
y = to_categorical(y, nb_classes=2) # Convert label to categorical to train with tflearn
# Train and test data
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.1, random_state=0)
# Standardize the data
sc = StandardScaler()
sc.fit(X_train)
X_test_sd = sc.transform(X_test)
# Model
input_layer = tflearn.input_data(shape=[None, 100], name='input')
dense1 = tflearn.fully_connected(input_layer, 128, activation='linear', name='dense1')
dropout1 = tflearn.dropout(dense1, 0.8)
dense2 = tflearn.fully_connected(dropout1, 128, activation='linear', name='dense2')
dropout2 = tflearn.dropout(dense2, 0.8)
output = tflearn.fully_connected(dropout2, 2, activation='softmax', name='output')
# if i % 10 == 0:
# train_accuracy = sess.run(accuracy, feed_dict={
# x: batch[0], y: batch[1]})
# print('Step %d: Training accuracy %g' % (i, train_accuracy))
# print("{} Saving checkpoint of model...".format(datetime.now()))
#
# #save checkpoint of the model
# checkpoint_name = os.path.join(checkpoint_path, 'model_step'+str(i)+'.ckpt')
# save_path = saver.save(sess, checkpoint_name)
#
# print("{} Model checkpoint saved at {}".format(datetime.now(), checkpoint_name))
# sess.run(train_step, feed_dict={x: batch[0], y: batch[1]})
#
# checkpoint_name = os.path.join(checkpoint_path, 'model_train.ckpt')
# save_path = saver.save(sess, checkpoint_name)
validY = to_categorical(validY, nb_classes=2)
trainY = to_categorical(trainY, nb_classes=2)
net = tflearn.input_data([None, 100])
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.0001,
loss='categorical_crossentropy')
model = tflearn.DNN(net, tensorboard_verbose=0)
model.fit(trainX, trainY, validation_set=(validX, validY), show_metric=True,
batch_size=batch_size, snapshot_epoch=True, n_epoch=n_epoch)
def model3():
for c, d in enumerate(uniq_diag[40:60]):
# Display the training diagnosis
print("--------------------Training {}--------------------".format(d))
# Run each iteration in a graph
with tf.Graph().as_default():
y = Y[d].astype(np.float32)
y = y.reshape(-1, 1)
y = to_categorical(y, nb_classes=2) # Convert label to categorical to train with tflearn
# Train and test data
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.1, random_state=0)
# Standardize the data
sc = StandardScaler()
sc.fit(X_train)
X_test_sd = sc.transform(X_test)
# Model
input_layer = tflearn.input_data(shape=[None, 100], name='input')
dense1 = tflearn.fully_connected(input_layer, 128, activation='linear', name='dense1')
dropout1 = tflearn.dropout(dense1, 0.8)
dense2 = tflearn.fully_connected(dropout1, 128, activation='linear', name='dense2')
dropout2 = tflearn.dropout(dense2, 0.8)
output = tflearn.fully_connected(dropout2, 2, activation='softmax', name='output')
loss='categorical_crossentropy',
trainable_vars=gen_vars,
batch_size=64, name='target_gen',
op_name='GEN')
# Define GAN model, that output the generated images.
gan = tflearn.DNN(gan_model)
# Training
# Prepare input data to feed to the discriminator
disc_noise = np.random.uniform(-1., 1., size=[total_samples, z_dim])
# Prepare target data to feed to the discriminator (0: fake image, 1: real image)
y_disc_fake = np.zeros(shape=[total_samples])
y_disc_real = np.ones(shape=[total_samples])
y_disc_fake = tflearn.data_utils.to_categorical(y_disc_fake, 2)
y_disc_real = tflearn.data_utils.to_categorical(y_disc_real, 2)
# Prepare input data to feed to the stacked generator/discriminator
gen_noise = np.random.uniform(-1., 1., size=[total_samples, z_dim])
# Prepare target data to feed to the discriminator
# Generator tries to fool the discriminator, thus target is 1 (e.g. real images)
y_gen = np.ones(shape=[total_samples])
y_gen = tflearn.data_utils.to_categorical(y_gen, 2)
# Start training, feed both noise and real images.
gan.fit(X_inputs={'input_gen_noise': gen_noise,
'input_disc_noise': disc_noise,
'input_disc_real': X},
Y_targets={'target_gen': y_gen,
'target_disc_fake': y_disc_fake,
'target_disc_real': y_disc_real},
n_epoch=10)
- [CIFAR-10 Dataset](https://www.cs.toronto.edu/~kriz/cifar.html)
"""
from __future__ import division, print_function, absolute_import
import tflearn
# Residual blocks
# 32 layers: n=5, 56 layers: n=9, 110 layers: n=18
n = 5
# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
Y = tflearn.data_utils.to_categorical(Y)
testY = tflearn.data_utils.to_categorical(testY)
# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)
# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)
# Building Residual Network
net = tflearn.input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
helpful_votes.append(json_obj["num_helpful_votes"])
titles.append(datasets.tokenize(json_obj["title"]))
if rescale is not None and one_hot == False:
ratings_service = datasets.rescale(ratings_service, rescale, [1.0, 5.0])
ratings_cleanliness = datasets.rescale(ratings_cleanliness, rescale,
[1.0, 5.0])
ratings_overall = datasets.rescale(ratings_overall, rescale, [1.0, 5.0])
ratings_value = datasets.rescale(ratings_value, rescale, [1.0, 5.0])
ratings_sleep_quality = datasets.rescale(ratings_sleep_quality, rescale,
[1.0, 5.0])
ratings_rooms = datasets.rescale(ratings_rooms, rescale, [1.0, 5.0])
elif rescale is None and one_hot == True:
ratings_service = to_categorical([x - 1 for x in ratings_service],
nb_classes=5)
ratings_cleanliness = to_categorical([x - 1 for x in ratings_cleanliness],
nb_classes=5)
ratings_overall = to_categorical([x - 1 for x in ratings_overall],
nb_classes=5)
ratings_value = to_categorical([x - 1 for x in ratings_value],
nb_classes=5)
ratings_sleep_quality = to_categorical([x - 1 for x in ratings_sleep_quality],
nb_classes=5)
ratings_rooms = to_categorical([x - 1 for x in ratings_rooms],
nb_classes=5)
elif rescale is None and one_hot == False:
pass
else:
raise ValueError('rescale and one_hot cannot be set together')
if mark_entities:
text = datasets.mark_entities(text)
from __future__ import division, print_function, absolute_import
import tflearn
# Growth Rate (12, 16, 32, ...)
k = 12
# Depth (40, 100, ...)
L = 40
nb_layers = int((L - 4) / 3)
# Data loading
from tflearn.datasets import cifar10
(X, Y), (testX, testY) = cifar10.load_data()
Y = tflearn.data_utils.to_categorical(Y)
testY = tflearn.data_utils.to_categorical(testY)
# Real-time data preprocessing
img_prep = tflearn.ImagePreprocessing()
img_prep.add_featurewise_zero_center(per_channel=True)
# Real-time data augmentation
img_aug = tflearn.ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_crop([32, 32], padding=4)
# Building Residual Network
net = tflearn.input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
def do_rnn(trainX, testX, trainY, testY):
global max_sequences_len
global max_sys_call
# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=max_sequences_len, value=0.)
testX = pad_sequences(testX, maxlen=max_sequences_len, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY, nb_classes=2)
testY_old=testY
testY = to_categorical(testY, nb_classes=2)
# Network building
print "GET max_sequences_len embedding %d" % max_sequences_len
print "GET max_sys_call embedding %d" % max_sys_call
net = tflearn.input_data([None, max_sequences_len])
net = tflearn.embedding(net, input_dim=max_sys_call+1, output_dim=128)
net = tflearn.lstm(net, 128, dropout=0.3)
net = tflearn.fully_connected(net, 2, activation='softmax')
net = tflearn.regression(net, optimizer='adam', learning_rate=0.1,
loss='categorical_crossentropy')
# Training
"""
import tflearn
from tflearn.data_utils import shuffle, to_categorical
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
print("started...")
# Data loading and preprocessing
from tflearn.datasets import cifar10
(X, Y), (X_test, Y_test) = cifar10.load_data()
X, Y = shuffle(X, Y)
Y = to_categorical(Y, 10)
Y_test = to_categorical(Y_test, 10)
# Real-time data preprocessing
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
# Real-time data augmentation
img_aug = ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_rotation(max_angle=25.)
# Convolutional network building
#-------------------------------------------------------------------------------------------
network = input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,