Secure your code as it's written. Use Snyk Code to scan source code in minutes - no build needed - and fix issues immediately.
svd : str, default is 'numpy_svd'
function to use to compute the SVD, acceptable values in tensorly.SVD_FUNS
non_negative : bool, default is False
if True, non-negative factors are returned
Returns
-------
factors : ndarray list
List of initialized factors of the CP decomposition where element `i`
is of shape (tensor.shape[i], rank)
"""
rng = check_random_state(random_state)
if init == 'random':
factors = [tl.tensor(rng.random_sample((tensor.shape[i], rank)), **tl.context(tensor)) for i in range(tl.ndim(tensor))]
if non_negative:
factors = [tl.abs(f) for f in factors]
if normalize_factors:
factors = [f/(tl.reshape(tl.norm(f, axis=0), (1, -1)) + 1e-12) for f in factors]
return factors
elif init == 'svd':
try:
svd_fun = tl.SVD_FUNS[svd]
except KeyError:
message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
svd, tl.get_backend(), tl.SVD_FUNS)
raise ValueError(message)
factors = []
for mode in range(tl.ndim(tensor)):
if len(modes1) != len(modes2):
raise ValueError('Can only contract two tensors along the same number of modes'
'(len(modes1) == len(modes2))'
'However, got {} modes for tensor 1 and {} mode for tensor 2'
'(modes1={}, and modes2={})'.format(
len(modes1), len(modes2), modes1, modes2))
contraction_dims = [tl.shape(tensor1)[i] for i in modes1]
if contraction_dims != [tl.shape(tensor2)[i] for i in modes2]:
raise ValueError('Trying to contract tensors over modes of different sizes'
'(contracting modes of sizes {} and {}'.format(
contraction_dims, [tl.shape(tensor2)[i] for i in modes2]))
shared_dim = int(np.prod(contraction_dims))
modes1_free = [i for i in range(tl.ndim(tensor1)) if i not in modes1]
free_shape1 = [tl.shape(tensor1)[i] for i in modes1_free]
tensor1 = tl.reshape(tl.transpose(tensor1, modes1_free + modes1),
(int(np.prod(free_shape1)), shared_dim))
modes2_free = [i for i in range(tl.ndim(tensor2)) if i not in modes2]
free_shape2 = [tl.shape(tensor2)[i] for i in modes2_free]
tensor2 = tl.reshape(tl.transpose(tensor2, modes2 + modes2_free),
(shared_dim, int(np.prod(free_shape2))))
res = tl.dot(tensor1, tensor2)
return tl.reshape(res, tuple(free_shape1 + free_shape2))
n_factors = len(factors)
if n_factors < 2:
raise ValueError('A Matrix-Product-State (ttrain) tensor should be composed of at least two factors and a core.'
'However, {} factor was given.'.format(n_factors))
rank = []
shape = []
for index, factor in enumerate(factors):
current_rank, current_shape, next_rank = tl.shape(factor)
# Check that factors are third order tensors
if not tl.ndim(factor)==3:
raise ValueError('MPS expresses a tensor as third order factors (tt-cores).\n'
'However, tl.ndim(factors[{}]) = {}'.format(
index, tl.ndim(factor)))
# Consecutive factors should have matching ranks
if index and tl.shape(factors[index - 1])[2] != current_rank:
raise ValueError('Consecutive factors should have matching ranks\n'
' -- e.g. tl.shape(factors[0])[2]) == tl.shape(factors[1])[0])\n'
'However, tl.shape(factor[{}])[2] == {} but'
' tl.shape(factor[{}])[0] == {} '.format(
index - 1, tl.shape(factors[index - 1])[2], index, current_rank))
# Check for boundary conditions
if (index == 0) and current_rank != 1:
raise ValueError('Boundary conditions dictate factor[0].shape[0] == 1.'
'However, got factor[0].shape[0] = {}.'.format(
current_rank))
if (index == n_factors - 1) and next_rank != 1:
raise ValueError('Boundary conditions dictate factor[-1].shape[2] == 1.'
'However, got factor[{}].shape[2] = {}.'.format(
n_factors, next_rank))
list of (tensor_order-1) of lists of left indices
col_idx: list of list of int
list of (tensor_order-1) of lists of right indices
Returns
-------
next_row_idx : list of int
the list of new row indices,
fibers_list : list of slice
the used fibers,
Q_skeleton : matrix
approximation of Q as product of Q and inverse of its maximum volume submatrix
"""
tensor_shape = tl.shape(input_tensor)
tensor_order = tl.ndim(input_tensor)
fibers_list = []
# Extract fibers according to the row and col indices
for i in range(rank[k]):
for j in range(rank[k + 1]):
fiber = row_idx[k][i] + (slice(None, None, None),) + col_idx[k][j]
fibers_list.append(fiber)
if k == 0: # Is[k] will be empty
idx = (slice(None, None, None),) + tuple(zip(*col_idx[k]))
else:
idx = [[] for i in range(tensor_order)]
for lidx in row_idx[k]:
for ridx in col_idx[k]:
for j, jj in enumerate(lidx): idx[j].append(jj)
for j, jj in enumerate(ridx): idx[len(lidx) + 1 + j].append(jj)
idx[k] = slice(None, None, None)
if non_negative:
factors = [tl.abs(f) for f in factors]
if normalize_factors:
factors = [f/(tl.reshape(tl.norm(f, axis=0), (1, -1)) + 1e-12) for f in factors]
return factors
elif init == 'svd':
try:
svd_fun = tl.SVD_FUNS[svd]
except KeyError:
message = 'Got svd={}. However, for the current backend ({}), the possible choices are {}'.format(
svd, tl.get_backend(), tl.SVD_FUNS)
raise ValueError(message)
factors = []
for mode in range(tl.ndim(tensor)):
U, _, _ = svd_fun(unfold(tensor, mode), n_eigenvecs=rank)
if tensor.shape[mode] < rank:
# TODO: this is a hack but it seems to do the job for now
# factor = tl.tensor(np.zeros((U.shape[0], rank)), **tl.context(tensor))
# factor[:, tensor.shape[mode]:] = tl.tensor(rng.random_sample((U.shape[0], rank - tl.shape(tensor)[mode])), **tl.context(tensor))
# factor[:, :tensor.shape[mode]] = U
random_part = tl.tensor(rng.random_sample((U.shape[0], rank - tl.shape(tensor)[mode])), **tl.context(tensor))
U = tl.concatenate([U, random_part], axis=1)
factor = U[:, :rank]
if non_negative:
factor = tl.abs(factor)
if normalize_factors:
factor = factor / (tl.reshape(tl.norm(factor, axis=0), (1, -1)) + 1e-12)
factors.append(factor)
Returns
-------
factors : ndarray list
list of positive factors of the CP decomposition
element `i` is of shape ``(tensor.shape[i], rank)``
References
----------
.. [3] Casey Battaglino, Grey Ballard and Tamara G. Kolda,
"A Practical Randomized CP Tensor Decomposition",
"""
rng = check_random_state(random_state)
factors = initialize_factors(tensor, rank, init=init, svd=svd, random_state=random_state)
rec_errors = []
n_dims = tl.ndim(tensor)
norm_tensor = tl.norm(tensor, 2)
min_error = 0
weights = tl.ones(rank, **tl.context(tensor))
for iteration in range(n_iter_max):
for mode in range(n_dims):
kr_prod, indices_list = sample_khatri_rao(factors, n_samples, skip_matrix=mode, random_state=rng)
indices_list = [i.tolist() for i in indices_list]
# Keep all the elements of the currently considered mode
indices_list.insert(mode, slice(None, None, None))
# MXNet will not be happy if this is a list insteaf of a tuple
indices_list = tuple(indices_list)
if mode:
sampled_unfolding = tensor[indices_list]
else:
sampled_unfolding = tl.transpose(tensor[indices_list])
factors = initialize_factors(tensor, rank, init=init, svd=svd,
random_state=random_state,
non_negative=non_negative,
normalize_factors=normalize_factors)
rec_errors = []
norm_tensor = tl.norm(tensor, 2)
weights = tl.ones(rank, **tl.context(tensor))
for iteration in range(n_iter_max):
if orthogonalise and iteration <= orthogonalise:
factors = [tl.qr(f)[0] if min(tl.shape(f)) >= rank else f for i, f in enumerate(factors)]
if verbose > 1:
print("Starting iteration", iteration + 1)
for mode in range(tl.ndim(tensor)):
if verbose > 1:
print("Mode", mode, "of", tl.ndim(tensor))
if non_negative:
accum = 1
# khatri_rao(factors).tl.dot(khatri_rao(factors))
# simplifies to multiplications
sub_indices = [i for i in range(len(factors)) if i != mode]
for i, e in enumerate(sub_indices):
if i:
accum *= tl.dot(tl.transpose(factors[e]), factors[e])
else:
accum = tl.dot(tl.transpose(factors[e]), factors[e])
pseudo_inverse = tl.tensor(np.ones((rank, rank)), **tl.context(tensor))
for i, factor in enumerate(factors):
if i != mode:
def _validate_mps_tensor(mps_tensor):
factors = mps_tensor
n_factors = len(factors)
if n_factors < 2:
raise ValueError('A Matrix-Product-State (ttrain) tensor should be composed of at least two factors and a core.'
'However, {} factor was given.'.format(n_factors))
rank = []
shape = []
for index, factor in enumerate(factors):
current_rank, current_shape, next_rank = tl.shape(factor)
# Check that factors are third order tensors
if not tl.ndim(factor)==3:
raise ValueError('MPS expresses a tensor as third order factors (tt-cores).\n'
'However, tl.ndim(factors[{}]) = {}'.format(
index, tl.ndim(factor)))
# Consecutive factors should have matching ranks
if index and tl.shape(factors[index - 1])[2] != current_rank:
raise ValueError('Consecutive factors should have matching ranks\n'
' -- e.g. tl.shape(factors[0])[2]) == tl.shape(factors[1])[0])\n'
'However, tl.shape(factor[{}])[2] == {} but'
' tl.shape(factor[{}])[0] == {} '.format(
index - 1, tl.shape(factors[index - 1])[2], index, current_rank))
# Check for boundary conditions
if (index == 0) and current_rank != 1:
raise ValueError('Boundary conditions dictate factor[0].shape[0] == 1.'
'However, got factor[0].shape[0] = {}.'.format(
current_rank))
if (index == n_factors - 1) and next_rank != 1:
random_state=random_state,
non_negative=non_negative,
normalize_factors=normalize_factors)
rec_errors = []
norm_tensor = tl.norm(tensor, 2)
weights = tl.ones(rank, **tl.context(tensor))
for iteration in range(n_iter_max):
if orthogonalise and iteration <= orthogonalise:
factors = [tl.qr(f)[0] if min(tl.shape(f)) >= rank else f for i, f in enumerate(factors)]
if verbose > 1:
print("Starting iteration", iteration + 1)
for mode in range(tl.ndim(tensor)):
if verbose > 1:
print("Mode", mode, "of", tl.ndim(tensor))
if non_negative:
accum = 1
# khatri_rao(factors).tl.dot(khatri_rao(factors))
# simplifies to multiplications
sub_indices = [i for i in range(len(factors)) if i != mode]
for i, e in enumerate(sub_indices):
if i:
accum *= tl.dot(tl.transpose(factors[e]), factors[e])
else:
accum = tl.dot(tl.transpose(factors[e]), factors[e])
pseudo_inverse = tl.tensor(np.ones((rank, rank)), **tl.context(tensor))
for i, factor in enumerate(factors):
if i != mode:
pseudo_inverse = pseudo_inverse*tl.dot(tl.conj(tl.transpose(factor)), factor)